20 research outputs found

    Effect of Mechanical Stimuli on the Phenotypic Plasticity of Induced Pluripotent Stem-Cell-Derived Vascular Smooth Muscle Cells in a 3D Hydrogel

    Get PDF
    Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel’s elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young’s modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young’s modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types. Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.</p

    Comparative proteomic analysis of cat eye syndrome critical region protein 1- function in tumor-associated macrophages and immune response regulation of glial tumors

    No full text
    Introduction: Tumor associated macrophages (TAMs) promote tumor development, angiogenesis and distal metastasis. In previous studies, we showed that Cat Eye Syndrome Critical Region Protein 1 (CECR1) is expressed by M2-like TAMs in human glioma samples. CECR1 promoted M2 TAMs differentiation and affected glioma cell proliferation and migration. Here we investigated the proteomic profile of TAMs expressing CECR1 in absence or presence of glioma cells. Results: CECR1 siRNA transfection upregulated 67 proteins in THP-1-derived Macrophages (MQs). Pathway annotation mapped this set to 3 major pathways relevant for MQ function, including 'MHC-I antigen presentation', 'phagosome maturation' and 'endocytosis'. Co-culture of siCECR1 THP-1-derived MQs with U87 glioma cells attenuated the changes observed on protein and mRNA level in response to MQ CECR1 silencing. SiCECR1 in U87 co-cultured MQs was associated with an IL-10low, IL-12high M1-like phenotype. In U87 co-culture conditions, SiCECR1 also downregulated S20 proteasome complex proteins PSMA5, PSMA7, PSMC6 and PSMD8. This protein profile was linked to a low proliferation rate of siCECR1 MQs. Overlap analysis identified S100A9 and PLAU as CECR1-related proteins that were significantly correlated with expression of CECR1 and macrophage lineage markers in three large public GBM datasets. Conclusion: This study reports the molecular pathways and key molecules that are mediated by CECR1 function in THP- 1-derived MQs and TAMs in glioma. Methods: PMA-treated THP-1 cells (MQs) were siRNA transfected for CECR1 in vitro, with or without stimulation of the primary glioma cell line U87. Lysates were analyzed by (nano)LC-MS. Significant altered protein levels were identified (P < 0.05), followed by pathway annotation

    Comparative proteomic analysis of cat eye syndrome critical region protein 1- function in tumor-associated macrophages and immune response regulation of glial tumors

    No full text
    Introduction: Tumor associated macrophages (TAMs) promote tumor development, angiogenesis and distal metastasis. In previous studies, we showed that Cat Eye Syndrome Critical Region Protein 1 (CECR1) is expressed by M2-like TAMs in human glioma samples. CECR1 promoted M2 TAMs differentiation and affected glioma cell proliferation and migration. Here we investigated the proteomic profile of TAMs expressing CECR1 in absence or presence of glioma cells. Results: CECR1 siRNA transfection upregulated 67 proteins in THP-1-derived Macrophages (MQs). Pathway annotation mapped this set to 3 major pathways relevant for MQ function, including 'MHC-I antigen presentation', 'phagosome maturation' and 'endocytosis'. Co-culture of siCECR1 THP-1-derived MQs with U87 glioma cells attenuated the changes observed on protein and mRNA level in response to MQ CECR1 silencing. SiCECR1 in U87 co-cultured MQs was associated with an IL-10low, IL-12high M1-like phenotype. In U87 co-culture conditions, SiCECR1 also downregulated S20 proteasome complex proteins PSMA5, PSMA7, PSMC6 and PSMD8. This protein profile was linked to a low proliferation rate of siCECR1 MQs. Overlap analysis identified S100A9 and PLAU as CECR1-related proteins that were significantly correlated with expression of CECR1 and macrophage lineage markers in three large public GBM datasets. Conclusion: This study reports the molecular pathways and key molecules that are mediated by CECR1 function in THP- 1-derived MQs and TAMs in glioma. Methods: PMA-treated THP-1 cells (MQs) were siRNA transfected for CECR1 in vitro, with or without stimulation of the primary glioma cell line U87. Lysates were analyzed by (nano)LC-MS. Significant altered protein levels were identified (P < 0.05), followed by pathway annotation

    Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation

    Get PDF
    Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFβ signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production

    Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation

    No full text
    Microvascular homeostasis is strictly regulated, requiring close interaction between endothelial cells and pericytes. Here, we aimed to improve our understanding of how microvascular crosstalk affects pericytes. Human-derived pericytes, cultured in absence, or presence of human endothelial cells, were studied by RNA sequencing. Compared with mono-cultured pericytes, a total of 6704 genes were differentially expressed in co-cultured pericytes. Direct endothelial contact induced transcriptome profiles associated with pericyte maturation, suppression of extracellular matrix production, proliferation, and morphological adaptation. In vitro studies confirmed enhanced pericyte proliferation mediated by endothelial-derived PDGFB and pericyte-derived HB-EGF and FGF2. Endothelial-induced PLXNA2 and ACTR3 upregulation also triggered pericyte morphological adaptation. Pathway analysis predicted a key role for TGFβ signaling in endothelial-induced pericyte differentiation, whereas the effect of signaling via gap- and adherens junctions was limited. We demonstrate that endothelial cells have a major impact on the transcriptional profile of pericytes, regulating endothelial-induced maturation, proliferation, and suppression of ECM production

    CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions

    No full text
    Vascular endothelial (VE) cadherin is a key component of endothelial adherens junctions (AJs) and plays an important role in maintaining vascular integrity. Endocytosis of VE-cadherin regulates junctional strength and a decrease of surface VE-cadherin reduces vascular stability. However, disruption of AJs is also a requirement for vascular sprouting. Identifying novel regulators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we evaluated the angiogenic potential of (CKLF-like MARVEL transmembrane domain 4) CMTM4 and assessed in which molecular pathway CMTM4 is involved during angiogenesis. Using a 3D vascular assay composed of GFP-labeled HUVECs and dsRED-labeled pericytes, we demonstrated in vitro that siRNA-mediated CMTM4 silencing impairs vascular sprouting. In vivo, CMTM4 silencing by morpholino injection in zebrafish larvae inhibits intersomitic vessel growth. Intracellular staining revealed that CMTM4 colocalizes with Rab4+ and Rab7+ vesicles, both markers of the endocytic trafficking pathway. CMTM4 colocalizes with both membrane-bound and internalized VE-cadherin. Adenovirus-mediated CMTM4 overexpression enhances the endothelial endocytic pathway, in particular the rapid recycling pathway, shown by an increase in early endosomal antigen-1 positive (EEA1+), Rab4+, Rab11+ , and Rab7+ vesicles. CMTM4 overexpression enhances membrane-bound VE-cadherin internalization, whereas CMTM4 knockdown decreases internalization of VE-cadherin. CMTM4 overexpression promotes endothelial barrier function, shown by an increase in recovery of transendothelial electrical resistance (TEER) after thrombin stimulation. We have identified in this study a novel regulatory function for CMTM4 in angiogenesis. CMTM4 plays an important role in the turnover of membrane-bound VE-cadherin at AJs, mediating endothelial barrier function and controlling vascular sprouting

    CMTM4 regulates angiogenesis by promoting cell surface recycling of VE-cadherin to endothelial adherens junctions

    Get PDF
    Vascular endothelial (VE) cadherin is a key component of endothelial adherens junctions (AJs) and plays an important role in maintaining vascular integrity. Endocytosis of VE-cadherin regulates junctional strength and a decrease of surface VE-cadherin reduces vascular stability. However, disruption of AJs is also a requirement for vascular sprouting. Identifying novel regulators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we evaluated the angiogenic potential of (CKLF-like MARVEL transmembrane domain 4) CMTM4 and assessed in which molecular pathway CMTM4 is involved during angiogenesis. Using a 3D vascular assay composed of GFP-labeled HUVECs and dsRED-labeled pericytes, we demonstrated in vitro that siRNA-mediated CMTM4 silencing impairs vascular sprouting. In vivo, CMTM4 silencing by morpholino injection in zebrafish larvae inhibits intersomitic vessel growth. Intracellular staining revealed that CMTM4 colocalizes with Rab4+ and Rab7+ vesicles, both markers of the endocytic trafficking pathway. CMTM4 colocalizes with both membrane-bound and internalized VE-cadherin. Adenovirus-mediated CMTM4 overexpression enhances the endothelial endocytic pathway, in particular the rapid recycling pathway, shown by an increase in early endosomal antigen-1 positive (EEA1+), Rab4+, Rab11+ , and Rab7+ vesicles. CMTM4 overexpression enhances membrane-bound VE-cadherin internalization, whereas CMTM4 knockdown decreases internalization of VE-cadherin. CMTM4 overexpression promotes endothelial barrier function, shown by an increase in recovery of transendothelial electrical resistance (TEER) after thrombin stimulation. We have identified in this study a novel regulatory function for CMTM4 in angiogenesis. CMTM4 plays an important role in the turnover of membrane-bound VE-cadherin at AJs, mediating endothelial barrier function and controlling vascular sprouting

    Effect of Mechanical Stimuli on the Phenotypic Plasticity of Induced Pluripotent Stem-Cell-Derived Vascular Smooth Muscle Cells in a 3D Hydrogel

    No full text
    Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel’s elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young’s modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young’s modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types.Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.</p

    Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression

    No full text
    Background.: The majority of glioma-associated microglia/macrophages have been identified as M2-type macrophages with immune suppressive and tumor supportive action. Recently, the extracellular adenosine deaminase protein Cat Eye Syndrome Critical Region Protein 1 (CECR1) was shown to regulate macrophage maturation. In this study, we investigate the role of CECR1 in the regulation of the glioma-associated macrophage response. Methods.: Expression of CECR1 was assessed in human glioma samples. CECR1-mediated macrophage response was studied in vitro, using donor derived CD14+ monocytes and the THP-1 monocytic cell line. The response of the human glioma cell line U87 to conditioned medium of macrophages preconditioned with recombinant human CECR1 or CECR1 silencing was also assessed. Results.: CECR1 was strongly expressed in high-grade gliomas (P < .001) and correlated positively with the M2 phenotype markers in tumor-associated microglia/macrophages (TAMs) (overall, P < .05). In vitro studies confirmed the presence of a significantly higher level of CECR1 expression in M2-like macrophages exposed to U87 conditioned medium (P < .001). CECR1 knockdown or stimulation of macrophages affected differentiation toward the M2-like phenotype. Stimulation of U87 cells with conditioned medium of CECR1 knockdown or stimulated macrophages affected tumor cell proliferation and migration, coinciding with altered intracellular signaling of mitogen-activated protein kinase (MAPK). In glioma tissue samples, CECR1 expression correlated with Ki67 and MAPK signaling protein. Conclusions.: CECR1 is a potent regulator of TAM polarization and is consistently highly expressed by M2-type TAMs, particularly in high-grade glioma. Paracrine effects induced by CECR1 in M2-like TAMs activate MAPK signaling and stimulate the proliferation and migration of glioma cells
    corecore