4,512 research outputs found
Gravitational Radiation from a Naked Singularity -- Odd-Parity Perturbation --
It has been suggested that a naked singularity may be a good candidate for a
strong gravitational wave burster. The naked singularity occurs in the generic
collapse of an inhomogeneous dust ball. We study odd-parity mode of
gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi
space-time. The wave equation for gravitational waves are solved by numerical
integration using the single null coordinate. The result is that the naked
singularity is not a strong source of the odd-parity gravitational radiation
although the metric perturbation grows in the central region. Therefore, the
Cauchy horizon in this space-time would be marginally stable against odd-parity
perturbations.Comment: 14 pages, 7 figures, to be published in Prog. Theor. Phys. Final
version, with minor changes. Reference 13 adde
Naked Singularity Explosion
It is known that the gravitational collapse of a dust ball results in naked
singularity formation from an initial density profile which is physically
reasonable. In this paper, we show that explosive radiation is emitted during
the formation process of the naked singularity.Comment: 6 pages, 3 figures, Accepted for Publication in Phys. Rev. D as a
Rapid Communicatio
Gravitational Radiation from a Naked Singularity. II - Even-Parity Perturbation -
A naked singularity occurs in the generic collapse of an inhomogeneous dust
ball. We study the even-parity mode of gravitational waves from a naked
singularity of the Lema\^{\i}tre-Tolman-Bondi spacetime. The wave equations for
gravitational waves are solved by numerical integration using the single null
coordinate. The result implies that the metric perturbation grows when it
approaches the Cauchy horizon and diverges there, although the naked
singularity is not a strong source of even-parity gravitational radiation.
Therefore, the Cauchy horizon in this spacetime should be unstable with respect
to linear even-parity perturbations.Comment: 16 pages, 5 figures, errors and typos corrected, final versio
Physical aspects of naked singularity explosion - How does a naked singularity explode? --
The behaviors of quantum stress tensor for the scalar field on the classical
background of spherical dust collapse is studied. In the previous works
diverging flux of quantum radiation was predicted. We use the exact expressions
in a 2D model formulated by Barve et al. Our present results show that the back
reaction does not become important during the semiclassical phase. The
appearance of the naked singularity would not be affected by this quantum field
radiation. To predict whether the naked singularity explosion occurs or not we
need the theory of quantum gravity. We depict the generation of the diverging
flux inside the collapsing star. The quantum energy is gathered around the
center positively. This would be converted to the diverging flux along the
Cauchy horizon. The ingoing negative flux crosses the Cauchy horizon. The
intensity of it is divergent only at the central naked singularity. This
diverging negative ingoing flux is balanced with the outgoing positive
diverging flux which propagates along the Cauchy horizon. After the replacement
of the naked singularity to the practical high density region the instantaneous
diverging radiation would change to more milder one with finite duration.Comment: 18 pages, 16 figure
Relaxor ferroelectricity induced by electron correlations in a molecular dimer Mott insulator
We have investigated the dielectric response in an antiferromagnetic
dimer-Mott insulator beta'-(BEDT-TTF)2ICl2 with square lattice, compared to a
spin liquid candidate kappa-(BEDT-TTF)2Cu2(CN)3. Temperature dependence of the
dielectric constant shows a peak structure obeying Curie-Weiss law with strong
frequency dependence. We found an anisotropic ferroelectricity by pyrocurrent
measurements, which suggests the charge disproportionation in a dimer. The
ferroelectric actual charge freezing temperature is related to the
antiferromagnetic interaction, which is expected to the charge-spin coupled
degrees of freedom in the system.Comment: 5 pages, 4 figures, to be published in Phys. Rev.
Physical Processes in Naked Singularity Formation
Gravitational collapse is one of the most fruitful subjects in gravitational
physics. It is well known that singularity formation is inevitable in complete
gravitational collapse. It was conjectured that such a singularity should be
hidden by horizons if it is formed from generic initial data with physically
reasonable matter fields. Many possible counterexamples to this conjecture have
been proposed over the past three decades, although none of them has proved to
be sufficiently generic. In these examples, there appears a singularity that is
not hidden by horizons. This singularity is called a `naked singularity.' The
appearance of a naked singularity represents the formation of an observable
high-curvature, strong-gravity region. In this paper we review examples of
naked singularity formation and recent progress in research of observable
physical processes - gravitational radiation and quantum particle creation -
from a forming naked singularity.Comment: 76 pages, 25 figure file
Application of Ecotoxicogenomics for Studying Endocrine Disruption in Vertebrates and Invertebrates
Chemicals released into the environment potentially disrupt the endocrine system in wild animals and humans. Developing organisms are particularly sensitive to estrogenic chemicals. Exposure to estrogens or estrogenic chemicals during critical periods of development induces persistent changes in both reproductive and nonreproductive organs, including persistent molecular alterations. Estrogen-responsive genes and critical developmental windows of various animal species, therefore, need to be identified for investigators to understand the molecular basis of estrogenic activity during embryonic development. For investigators to understand molecular mechanisms of toxicity in various species, toxicogenomics/ecotoxicogenomics, defined as the integration of genomics (transcriptomics, proteomics, metabolomics) into toxicology and ecotoxicology, need to be established as powerful tools for research. As the initial step toward using genomics to examine endocrine-disrupting chemicals, estrogen receptors and other steroid hormone receptors have been cloned in various species, including reptiles, amphibians, and fish, and alterations in the expression of these genes in response to chemicals were investigated. We are identifying estrogen-responsive genes in mouse reproductive tracts using cDNA microarrays and trying to establish microarray systems in the American alligator, roach, medaka, and water fleas (Daphnia magna). It is too early to define common estrogen-responsive genes in various animal species; however, toxicogenomics and ectotoxicogenomics provide powerful tools to help us understand the molecular mechanism of chemical toxicities in various animal species
- …