40 research outputs found

    Challenge and promise: the role of miRNA for pathogenesis and progression of malignant melanoma

    Get PDF
    microRNAs are endogenous noncoding RNAs that are implicated in gene regulation. More recently, miRNAs have been shown to play a pivotal role in multiple cellular processes that interfere with tumorigenesis. Here we summarize the essential role of microRNAs for human cancer with special focus on malignant melanoma and the promising perspectives for cancer therapies

    AP2Ξ± controls the dynamic balance between miR-126&126βˆ— and miR-221&222 during melanoma progression

    Get PDF
    Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126βˆ— in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126βˆ—, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse expression pattern of miR-126&126βˆ—-targeted genes that were induced by miR-221&222. Looking for a central player in this complex network, we revealed the dual regulation of AP2Ξ±, on one side directly targeted by miR-221&222 and on the other a transcriptional activator of miR-126&126βˆ—. We showed the chance of restoring miR-126&126βˆ— expression in metastatic melanoma to reduce the amount of mature intracellular heparin-binding EGF like growth factor, thus preventing promyelocytic leukemia zinc finger delocalization and maintaining its repression on miR-221&222 promoter. Thus, the low-residual quantity of these two miRs assures the release of AP2Ξ± expression, which in turn binds to and induces miR-126&126βˆ— transcription. All together these results point to an unbalanced ratio functional to melanoma malignancy between these two couples of miRs. During progression this balance gradually moves from miR-126&126βˆ— toward miR-221&222. This circuitry, besides confirming the central role of AP2Ξ± in orchestrating melanoma development and/or progression, further displays the significance of these miRs in cancer and the option of utilizing them for novel therapeutics

    Optimizing the Design of Oligonucleotides for Homology Directed Gene Targeting

    Get PDF
    BACKGROUND: Gene targeting depends on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. A robust mechanistic model of homologous recombination is necessary to fully exploit gene targeting for therapeutic benefit. METHODOLOGY/PRINCIPAL FINDINGS: In this work, our recently developed numerical simulation model for homology search is employed to develop rules for the design of oligonucleotides used in gene targeting. A Metropolis Monte-Carlo algorithm is used to predict the pairing dynamics of an oligonucleotide with the target double-stranded DNA. The model calculates the base-alignment between a long, target double-stranded DNA and a probe nucleoprotein filament comprised of homologous recombination proteins (Rad51 or RecA) polymerized on a single strand DNA. In this study, we considered different sizes of oligonucleotides containing 1 or 3 base heterologies with the target; different positions on the probe were tested to investigate the effect of the mismatch position on the pairing dynamics and stability. We show that the optimal design is a compromise between the mean time to reach a perfect alignment between the two molecules and the stability of the complex. CONCLUSION AND SIGNIFICANCE: A single heterology can be placed anywhere without significantly affecting the stability of the triplex. In the case of three consecutive heterologies, our modeling recommends using long oligonucleotides (at least 35 bases) in which the heterologous sequences are positioned at an intermediate position. Oligonucleotides should not contain more than 10% consecutive heterologies to guarantee a stable pairing with the target dsDNA. Theoretical modeling cannot replace experiments, but we believe that our model can considerably accelerate optimization of oligonucleotides for gene therapy by predicting their pairing dynamics with the target dsDNA

    The Regulation of miRNA-211 Expression and Its Role in Melanoma Cell Invasiveness

    Get PDF
    The immediate molecular mechanisms behind invasive melanoma are poorly understood. Recent studies implicate microRNAs (miRNAs) as important agents in melanoma and other cancers. To investigate the role of miRNAs in melanoma, we subjected human melanoma cell lines to miRNA expression profiling, and report a range of variations in several miRNAs. Specifically, compared with expression levels in melanocytes, levels of miR-211 were consistently reduced in all eight non-pigmented melanoma cell lines we examined; they were also reduced in 21 out of 30 distinct melanoma samples from patients, classified as primary in situ, regional metastatic, distant metastatic, and nodal metastatic. The levels of several predicted target mRNAs of miR-211 were reduced in melanoma cell lines that ectopically expressed miR-211. In vivo target cleavage assays confirmed one such target mRNA encoded by KCNMA1. Mutating the miR-211 binding site seed sequences at the KCNMA1 3β€²-UTR abolished target cleavage. KCNMA1 mRNA and protein expression levels varied inversely with miR-211 levels. Two different melanoma cell lines ectopically expressing miR-211 exhibited significant growth inhibition and reduced invasiveness compared with the respective parental melanoma cell lines. An shRNA against KCNMA1 mRNA also demonstrated similar effects on melanoma cells. miR-211 is encoded within the sixth intron of TRPM1, a candidate suppressor of melanoma metastasis. The transcription factor MITF, important for melanocyte development and function, is needed for high TRPM1 expression. MITF is also needed for miR-211 expression, suggesting that the tumor-suppressor activities of MITF and/or TRPM1 may at least partially be due to miR-211's negative post transcriptional effects on the KCNMA1 transcript. Given previous reports of high KCNMA1 levels in metastasizing melanoma, prostate cancer and glioma, our findings that miR-211 is a direct posttranscriptional regulator of KCNMA1 expression as well as the dependence of this miRNA's expression on MITF activity, establishes miR-211 as an important regulatory agent in human melanoma

    EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases

    Get PDF
    EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention

    Streaking ahead

    No full text

    Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA)

    No full text
    Gene correction activation effects of a small series of triplex forming peptide nucleic acid (PNA) covalently conjugated to the DNA interacting ligands psoralen, chlorambucil and camptothecin targeted proximal to a stop codon mutation in an EGFP reporter gene were studied. A 15-mer homopyrimidine PNA conjugated to the topoisomerase I inhibitor camptothecin was found to increase the frequency of repair domain mediated gene correctional events of the EGFP reporter in an in vitro HeLa cell nuclear extract assay, whereas PNA psoralen or chlorambucil conjugates both of which form covalent and also interstrand crosslinked adducts with dsDNA dramatically decreased the frequency of targeted repair/correction. The PNA conjugates were also studied in mammalian cell lines upon transfection of PNA bound EGFP reporter vector and scoring repair of the EGFP gene by FACS analysis of functional EGFP expression. Consistent with the extract experiments, treatment with adduct forming PNA conjugates (psoralen and chlorambucil) resulted in a decrease in background correction frequencies in transiently transfected cells, whereas unmodified PNA or the PNA-camptothecin conjugate had little or no effect. These results suggest that simple triplex forming PNAs have little effect on proximal gene correctional events whereas PNA conjugates capable of forming DNA adducts and interstrand crosslinks are strong inhibitors. Most interestingly the PNA conjugated to the topoisomerase inhibitor, camptothecin enhanced repair in nuclear extract. Thus the effects and use of camptothecin conjugates in gene targeted repair merit further studies
    corecore