2 research outputs found

    Method of Optical Diagnostics of Grain Seeds Infected with Fusarium

    No full text
    Optical sensors have shown good capabilities for detecting and monitoring plant diseases, including fusariosis. The spectral characteristics of the excitation and luminescence of wheat, oat and barley seeds were measured using a diffraction spectrofluorimeter in the range of 180–700 nm. It was found that during infection, the spectral density of the absorption capacity increases and the curve ηe(λ) shifts upwards in the range of 380–450 nm. The shift to the left is also noticeable for the wheat and barley spectra. The photoluminescence flux at λe = 232 nm increased by 1.71 times when oat seeds were infected, by 2.63 times when wheat was infected and by 3.14 times when barley was infected. The dependences of the infection degree on the photoluminescence flux are statistically and reliably approximated by linear regression models with determination coefficients R2 = 0.83–0.95. The method of determining the degree of infection can include both absolute measurements of photoluminescence flux in the range of 290–380 nm and measurements of the flux ratios when excited by radiation of 232 nm and 424 nm for wheat and 485 nm for barley. An optoelectronic device for remote monitoring can be designed in order to implement the methodology for determining the degree of infection of agricultural plant seeds

    Determination of Main Spectral and Luminescent Characteristics of Winter Wheat Seeds Infected with Pathogenic Microflora

    No full text
    In connection with the constant growth of demand for high-quality food products, there is a need to develop effective methods for storing agricultural products, and the registration and predicting infection in the early stages. The studying of the physical properties of infected plants and seeds has fundamental importance for determining crop losses, conducting a survey of diseases, and assessing the effectiveness of their control (assessment of the resistance of crops and varieties, the effect of fungicides, etc.). Presently, photoluminescent methods for diagnosing seeds in the ultraviolet and visible ranges have not been studied. For research, seeds of winter wheat were selected, and were infected with one of the most common and dangerous diseases for plants—fusarium. The research of luminescence was carried out based on a hardware–software complex consisting of a multifunctional spectrofluorometer “Fluorat-02-Panorama”, a computer with software “Panorama Pro” installed, and an external camera for the samples under study. Spectra were obtained with a diagnostic range of winter wheat seeds of 220–400 nm. Based on the results obtained for winter wheat seeds, it is possible to further develop a method for determining the degree of fusarium infection
    corecore