99 research outputs found

    A Forecast Model of the Complex Negative Impact of Agricultural Production Technologies on Water Bodies

    Get PDF
    Introduction. The purpose of research is to develop a mathematical model for assessing and forecasting the complex negative impacts of agricultural technologies on water bodies. This problem is relevant because of the need to enlarge agricultural enterprises. The created model for forecasting is necessary to make an objective assessment, taking into account the complex effect of machine technologies applied to agricultural production and all biogenic elements that have a negative impact on water bodies. Materials and Methods. There was used the Spesivtsev – Drozdov method of logical-linguistic modeling, which allows giving expert knowledge a form mathematical model. Four experts were interviewed, and the obtained data became a subject of the regression analysis. The adequacy of the model was confirmed using the coefficient of determination and Fisher’s test. Results. A hierarchical system of 6 factors and 14 sub-factors was formed, including both the applied machine technologies and the management decisions on the matter. There was created a model containing a polynomial equation reflecting the influence of factors on the level of negative impact of technologies and equations that determine the influence of sub-factors on factors. Discussion and Conclusion. The created model can be used for practical purposes to support making decisions for planning, forecasting and selecting scenarios to modernize agricultural enterprises. The model equations make it possible to understand the significance of factors and sub-factors affecting the level of negative impact (diffuse load) on water bodies. This allows us to choose more effective ways to reduce the negative impact by choosing the most significant factors and/or sub-factors as objects of management

    Probe-based confocal laser endomicroscopy in diagnosis of diffuse cystic lung disease in Sjögren’s syndrome

    Get PDF
    Sjögren’s syndrome is systemic autoimmune disease characterized by lymphocytic infiltration of various organs with wide frequency of pulmonary involvement. Diffuse cystic lung disease in Sjögren’s syndrome is a rare condition and requires differential diagnosis with other cystic pathologies such as lymphangioleyomiomatosis or Langerhans cell histiocytosis. Probe-based confocal laser endomicroscopy (pCLE) is a method of in vivo investigation of airways and lung tissue on microscopic level during bronchoscopy. We used this method in diffuse cystic lung disease caused by Sjögren’s syndrome. The pCLE image showed a large number of fluorescent cells presumably lymphocytes in bronchioles, dilated alveolar spaces with fluid and thin alveolar walls. We think that the presence of the bronchiolar cells pattern can be used to differentiate between the pulmonary manifestations of Sjögren's disease and other cystic lung diseases

    Double-reading mammograms using artificial intelligence technologies: A new model of mass preventive examination organization

    Get PDF
    BACKGROUND: In recent years, the availability of medical datasets and technologies for software development based on artificial intelligence technology has resulted in a growth in the number of solutions for medical diagnostics, particularly mammography. Registered as a medical device, this program can interpret digital mammography, significantly saving time, material, and human resources in healthcare while ensuring the quality of mammary gland preventive studies. AIM: This study aims to justify the possibility and effectiveness of artificial intelligence-based software for the first interpretation of digital mammograms while maintaining the practice of a radiologists second description of X-ray images. MATERIALS AND METHODS: A dataset of 100 digital mammography studies (50 absence of target pathology and 50 ― presence of target pathology, with signs of malignant neoplasms) was processed by software based on artificial intelligence technology that was registered as a medical device in the Russian Federation. Receiver operating characteristic analysis was performed. Limitations of the study include the values of diagnostic accuracy metrics obtained for software based on artificial intelligence technology versions, relevant at the end of 2022. RESULTS: When set to 80.0% sensitivity, artificial intelligence specificity was 90.0% (95% CI, 81.798.3), and accuracy was 85.0% (95% CI, 78.092.0). When set to 100% specificity, artificial intelligence demonstrated 56.0% sensitivity (95% CI, 42.269.8) and 78.0% accuracy (95% CI, 69.986.1). When the sensitivity was set to 100%, the artificial intelligence specificity was 54.0% (95% CI, 40.267.8), and the accuracy was 77.0% (95% CI, 68.885.2). Two approaches have been proposed, providing an autonomous first interpretation of digital mammography using artificial intelligence. The first approach is to evaluate the X-ray image using artificial intelligence with a higher sensitivity than that of the double-reading mammogram by radiologists, with a comparable level of specificity. The second approach implies that artificial intelligence-based software will determine the mammogram category (absence of target pathology or presence of target pathology), indicating the degree of confidence in the obtained result, depending on the corridor into which the predicted value falls. CONCLUSIONS: Both proposed approaches for using artificial intelligence-based software for the autonomous first interpretation of digital mammograms can provide diagnostic quality comparable to, if not superior to, double-image reading by radiologists. The economic benefit from the practical implementation of this approach nationwide can range from 0.6 to 5.5 billion rubles annually

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Efficiency of Finding Muon Track Trigger Primitives in CMS Cathode Strip Chambers

    Get PDF
    In the CMS Experiment, muon detection in the forward direction is accomplished by cathode strip chambers~(CSC). These detectors identify muons, provide a fast muon trigger, and give a precise measurement of the muon trajectory. There are 468 six-plane CSCs in the system. The efficiency of finding muon trigger primitives (muon track segments) was studied using~36 CMS CSCs and cosmic ray muons during the Magnet Test and Cosmic Challenge~(MTCC) exercise conducted by the~CMS experiment in~2006. In contrast to earlier studies that used muon beams to illuminate a very small chamber area (< ⁣0.01< \! 0.01~m2^2), results presented in this paper were obtained by many installed CSCs operating {\em in situ} over an area of  ⁣23\approx \! 23~m2^2 as a part of the~CMS experiment. The efficiency of finding 2-dimensional trigger primitives within 6-layer chambers was found to be~99.93±0.03%99.93 \pm 0.03\%. These segments, found by the CSC electronics within 800800~ns after the passing of a muon through the chambers, are the input information for the Level-1 muon trigger and, also, are a necessary condition for chambers to be read out by the Data Acquisition System

    Regeneration Growth as One of the Principal Stages of Diamond Crystallogenesis

    No full text
    Revealing the internal structure of diamonds is key to understanding the general regularities of crystal growth and dissolution. This paper presents and summarizes data on the internal structure of diamonds of different morphological types, colors and defect-impurity composition. In order to provide a comprehensive explanation of the stages of diamond growth, crystals and plates were observed, and panchromatic cathodoluminescence and photoluminescence techniques were applied. This article considers the mechanism of tangential growth from existing surfaces (regeneration growth) as an intermediate stage between normal and tangential crystal growth. The regeneration growth is very fast due to the absence of the limiting stage-nucleation of a new atomic layer. Cuboid diamonds were refaceted to stepped octahedrons by the regeneration growth mechanism. A schematic model of crystal habit transformation due to regeneration growth explains the internal structure of crystals in connection with their morphology and thermal history. The main variants of regeneration stage and its morphological manifestations were demonstrated. Most diamonds pass through the regeneration stage, and in many cases, it was a stage of growth termination

    Regeneration Growth as One of the Principal Stages of Diamond Crystallogenesis

    No full text
    Revealing the internal structure of diamonds is key to understanding the general regularities of crystal growth and dissolution. This paper presents and summarizes data on the internal structure of diamonds of different morphological types, colors and defect-impurity composition. In order to provide a comprehensive explanation of the stages of diamond growth, crystals and plates were observed, and panchromatic cathodoluminescence and photoluminescence techniques were applied. This article considers the mechanism of tangential growth from existing surfaces (regeneration growth) as an intermediate stage between normal and tangential crystal growth. The regeneration growth is very fast due to the absence of the limiting stage-nucleation of a new atomic layer. Cuboid diamonds were refaceted to stepped octahedrons by the regeneration growth mechanism. A schematic model of crystal habit transformation due to regeneration growth explains the internal structure of crystals in connection with their morphology and thermal history. The main variants of regeneration stage and its morphological manifestations were demonstrated. Most diamonds pass through the regeneration stage, and in many cases, it was a stage of growth termination

    (Nano)Technology for Managing Plant Organisms with the Help of Targeted Impact Using the Signals of the Physical Nature Dedicated to the blessed memory of Prof

    No full text
    ABSTRACT One of the major problems of agricultural production has been to improve the sowing qualities of seeds to increase yields of various crops. In this regard, of particular interest is the control technology of vegetable organisms by &quot;address the impact of&quot; signals of the physical nature. Plasma treatment of seeds influences the growth and development of the amaranth. The effectiveness of treatment depends on the exposure time of the exposure. The largest positive treatment effect of the plasma on the growth, development and yield of amaranth has been observed when the exposure 60 seconds, leading to increased yields. Keywords: pre-treatment; seeds; plasma; amaranth; harvest: elicitors; (nano) chips; pre-sowing seed treatment; growth; development; the incidence of rape plants; the quantity and quality of their cro

    Hyperfine magnetic fields at the nuclei of probe <sup>119</sup>Sn atoms and exchange interactions in the CaCu<sub>3</sub>Mn<sub>3.96</sub>Sn<sub>0.04</sub>O<sub>12</sub> manganite

    No full text
    We have investigated the hyperfine magnetic interactions between the nuclei of probe 119Sn atoms in the CaCu3Mn3.96Sn0.04O12 double manganite by Mössbauer spectroscopy using magnetic measurements. A consistent description of the results obtained in terms of the Weiss molecular field model by taking into account the peculiarities of the local environment of tin atoms has allowed the indirect Cu2+-O-Mn4+ (J CuMn ≈ −51 ± 1 K) and Mn4+-O-Mn4+ (J MnMn ≈ −0.6 ± 0.6 K) exchange interaction integrals to be estimated. Based on the Kanamori-Goodenough-Anderson model, we show that the magnitude and sign of the intrasublattice exchange integral J MnMn correspond to both the electronic configuration of the Mn4+ cations and the geometry of their local crystallographic environment in the compound under study

    Lactoferrin Induces Erythropoietin Synthesis and Rescues Cognitive Functions in the Offspring of Rats Subjected to Prenatal Hypoxia

    No full text
    The protective effects of recombinant human lactoferrin rhLF (branded &ldquo;CAPRABEL&trade;&rdquo;) on the cognitive functions of rat offspring subjected to prenatal hypoxia (7% O2, 3 h, 14th day of gestation) have been analyzed. About 90% of rhLF in CAPRABEL was iron-free (apo-LF). Rat dams received several injections of 10 mg of CAPRABEL during either gestation (before and after the hypoxic attack) or lactation. Western blotting revealed the appearance of erythropoietin (EPO) alongside the hypoxia-inducible factors (HIFs) in organ homogenates of apo-rhLF-treated pregnant females, their embryos (but not placentas), and in suckling pups from the dams treated with apo-rhLF during lactation. Apo-rhLF injected to rat dams either during pregnancy or nurturing the pups was able to rescue cognitive deficits caused by prenatal hypoxia and improve various types of memory both in young and adult offspring when tested in the radial maze and by the Novel Object Recognition (NOR) test. The data obtained suggested that the apo-form of human LF injected to female rats during gestation or lactation protects the cognitive functions of their offspring impaired by prenatal hypoxia
    corecore