6 research outputs found

    Analysis of efficiency of applying cycling in reservoir development of gas condensate

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ газокондСнсатных Π·Π°Π»Π΅ΠΆΠ΅ΠΉ Π½Π° мСстороТдСниях Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ Π³Π°Π·Π° Π½Π°Π±Π»ΡŽΠ΄Π°ΡŽΡ‚ΡΡ процСссы Ρ€Π΅Ρ‚Ρ€ΠΎΠ³Ρ€Π°Π΄Π½ΠΎΠΉ кондСнсации, вслСдствиС ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² пластС Π±Π΅Π·Π²ΠΎΠ·Π²Ρ€Π°Ρ‚Π½ΠΎ Ρ‚Π΅Ρ€ΡΡŽΡ‚ΡΡ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΎΠ±ΡŠΠ΅ΠΌΡ‹ высококипящих ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π‘[5+], Π΄ΠΎΠ±Ρ‹Ρ‡Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являлась Π±Ρ‹ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Π΄ΠΎΡ…ΠΎΠ΄Π½Ρ‹ΠΌ источником для Π½Π΅Ρ„Ρ‚Π΅Π³Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ. ΠžΠ±Ρ‰ΠΈΠ΅ запасы Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата Π² России ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ ΠΎΠΊΠΎΠ»ΠΎ 2 ΠΌΠ»Ρ€Π΄ Ρ‚, поэтому для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ извлСчСния ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² газокондСнсатной пластовой смСси Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Π½Π΅Π΄Ρ€Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Ρ… эффСктивных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π΄ΠΎΠ±Ρ‹Ρ‡ΠΈ. ЦСлью исслСдования являСтся обоснованиС эффСктивности примСнСния сайклинг-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ газокондСнсатной Π·Π°Π»Π΅ΠΆΠΈ. ΠžΠ±ΡŠΠ΅ΠΊΡ‚: мСстороТдСниС N, располоТСнноС Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ Восточной Π‘ΠΈΠ±ΠΈΡ€ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅, гСологичСскоС ΠΈ гидродинамичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ газокондСнсатной Π·Π°Π»Π΅ΠΆΠΈ Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ газокондСнсатной пластовой смСси Π² соотвСтствии с ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹ΠΌ составом ΠΏΡ€ΠΎΠ± Π³Π°Π·Π° ΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ кондСнсата, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ газокондСнсатных исслСдований. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Π° упрощСнная гСологичСская модСль исслСдуСмой Π·Π°Π»Π΅ΠΆΠΈ, Π½Π° основС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ гидродинамичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π΅Π΅ состояния Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ газокондСнсатной Π·Π°Π»Π΅ΠΆΠΈ, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ коэффициСнт извлСчСния кондСнсата, коэффициСнт извлСчСния ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π‘[2-]Π‘[4] ΠΈ кондСнсато-Π³Π°Π·ΠΎΠ²Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€, Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π΄ΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ сайклинг-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ извлСчСния ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π‘[5+] ΠΈ позволяСт Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ряд экономичСских ΠΈ экологичСских Π·Π°Π΄Π°Ρ‡. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½Π° адаптация прСдставлСнной ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ΄ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π³ΠΎΡ€Π½ΠΎ-гСологичСскиС условия с Ρ†Π΅Π»ΡŒΡŽ примСнСния Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ Π—Π°ΠΏΠ°Π΄Π½ΠΎ-Бибирской ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… нСфтСгазоносных ΠΏΡ€ΠΎΠ²ΠΈΠ½Ρ†ΠΈΠΉ.The relevance of the research is conditioned by the processes of retrograde condensation while developing gas-condensate reservoirs at oil and gas fields. Due to these processes the reservoir losses its significant volumes of high-boiling components of Π‘[5+] hydrocarbon group, the production of which would be an additional income source for oil companies. The total reserves of gas condensate in Russia is about two billion tons. Therefore, to solve the problem of the fullest extraction of gas-condensate reservoir components it is necessary to implement new production methods. The research aim is to justify the efficiency of cycling technology in gas-condensate reservoir development. Subject: N field located in the territory of the Eastern Siberia. Methods: compositional, geologic, and hydrodynamic simulation of gas-condensate reservoir Results. The paper presents the results of gas-condensate formation fluid compositional simulation in accordance with gas and condensate sample composition as well as gas-condensate study. Simplified geologic model of studied reservoir has been built and hydrodynamic simulation of its condition has been performed for different recovery mechanisms. Comparative analysis of gas condensate reservoir development parameters (condensate recovery factor, Π‘[2-]Π‘[4] recovery factor, and condensate-gas factor) at different recovery mechanisms proved that application of cycling results in increase of extraction of hydrocarbon group Π‘[5+] component and allows solving a number of economic and environmental problems. It is possible to adapt the model to the required geologic conditions to use the given technology in the territory of Eastern Siberia and other petroleum provinces

    On equivalence of gluon-loop exchange in the inelastic processes in perturbative QCD to pion exchange in

    No full text
    We consider the hadron–hadron inelastic scattering in the framework of QCD perturbation theory. It is shown that in QCD, due to conservation of color, the tree-level diagrams of inelastic scattering are prohibited and one has to deal with the diagrams with loops. We examine the simplest type of such diagrams, where the diagram can be split into blocks, so that the integration over four-momenta of virtual particles in each block can be done independently. It is shown that for these diagrams the squared absolute value of scattering amplitude has a maximum point, similar to that observed earlier in ΙΈ3 model, if one takes into account the relations between the arguments of scattering amplitude, imposed by the energy-momentum conservation law. This enables to apply the Laplace’s method for the calculation of cross section of hadron–hadron inelastic scattering. It is shown that the diagrams of gluon-loop exchange in QCD are equivalent to the diagrams of pion exchange in ΙΈ3 theory, whereby the new mechanism of cross section growth, discovered earlier in ΙΈ3 theory, takes place also in the perturbative QCD. The latter may explain the origin of experimentally-observed growth of cross section of hadron–hadron inelastic scattering as function of energy of colliding hadrons. The discovered mechanism can’t emerge in any Regge-based model due to the premises on the particle kinematics, made in these models

    On equivalence of gluon-loop exchange in the inelastic processes in perturbative QCD to pion exchange in ΙΈ3 theory

    No full text
    We consider the hadron–hadron inelastic scattering in the framework of QCD perturbation theory. It is shown that in QCD, due to conservation of color, the tree-level diagrams of inelastic scattering are prohibited and one has to deal with the diagrams with loops. We examine the simplest type of such diagrams, where the diagram can be split into blocks, so that the integration over four-momenta of virtual particles in each block can be done independently. It is shown that for these diagrams the squared absolute value of scattering amplitude has a maximum point, similar to that observed earlier in ΙΈ3 model, if one takes into account the relations between the arguments of scattering amplitude, imposed by the energy-momentum conservation law. This enables to apply the Laplace’s method for the calculation of cross section of hadron–hadron inelastic scattering. It is shown that the diagrams of gluon-loop exchange in QCD are equivalent to the diagrams of pion exchange in ΙΈ3 theory, whereby the new mechanism of cross section growth, discovered earlier in ΙΈ3 theory, takes place also in the perturbative QCD. The latter may explain the origin of experimentally-observed growth of cross section of hadron–hadron inelastic scattering as function of energy of colliding hadrons. The discovered mechanism can’t emerge in any Regge-based model due to the premises on the particle kinematics, made in these models

    Choice of optimal design of expansion joint in construction of aboveground linear section of oil pipeline

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна сниТСниСм мСталлоСмкости прямолинСйного участка Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° для транспортировки Π½Π°Π³Ρ€Π΅Ρ‚ΠΎΠΉ Π½Π΅Ρ„Ρ‚ΠΈ ΠΈ сокращСниСм Π·Π°Ρ‚Ρ€Π°Ρ‚ Π½Π° Π΅Π³ΠΎ ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚Π°Ρ†ΠΈΡŽ Π² зависимости ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° конструкции компСнсационного Π±Π»ΠΎΠΊΠ°. ЦСль: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ конструкции компСнсатора прямолинСйного участка Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ влияния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΠ΅Ρ€Π΅ΠΊΠ°Ρ‡ΠΈΠ²Π°Π΅ΠΌΠΎΠΉ срСды Π² условиях сбСрСТСния производствСнных рСсурсов. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹: Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ²ΠΎΠ΄ для ΠΏΠ΅Ρ€Π΅ΠΊΠ°Ρ‡ΠΊΠΈ горячСй Π½Π΅Ρ„Ρ‚ΠΈ, П-, S-ΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΉ, Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠ΅Π²ΠΈΠ΄Π½Ρ‹ΠΉ ΠΈ Π΄ΡƒΠ³ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹ΠΉ компСнсационныС Π±Π»ΠΎΠΊΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: матСматичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ части участка Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°, располоТСнного Π² области распространСния ΠΊΡ€ΠΈΠΎΠ»ΠΈΡ‚ΠΎΠ·ΠΎΠ½Ρ‹, ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Ρ… элСмСнтов, ΠΈΠ½Ρ‚Π΅Π³Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π² ANSYS Workbench, ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… зависимостСй для Π²Ρ‹Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ тСхничСского Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΡ‡Π½ΠΎΡΡ‚Π½ΠΎΠΉ расчСт Ρ€Π°Π·Π½Ρ‹Ρ… конструкционных исполнСний компСнсационных Π±Π»ΠΎΠΊΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΎΠ±ΡŠΠ΅ΠΌΡ‹ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… напряТСний ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… вслСдствиС измСнСния условий ΠΏΠ΅Ρ€Π΅ΠΊΠ°Ρ‡ΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ³Ρ€Π΅Ρ‚ΠΎΠΉ Π½Π΅Ρ„Ρ‚ΠΈ ΠΏΠΎ прямолинСйному участку Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π°. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Ρ‹ Π² основу Π²Ρ‹Π±ΠΎΡ€Π° ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… гСомСтричСских Ρ‚ΠΈΠΏΠΎΡ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² компСнсаторов, рассматриваСмых ΠΏΡ€ΠΈ сооруТСнии Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ части участка Π·Π°Π΄Π°Π½Π½ΠΎΠΉ протяТСнности. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ расчСт тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² прямолинСйного участка Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π° с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π·Π°Π½ΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ ΠΏΠΎΠ΄ конструкционным сооруТСниСм ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, которая нСпосрСдствСнно влияСт Π½Π° ΠΎΠ±ΡŠΠ΅ΠΌΡ‹ зСмлСпользования Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° исслСдования. Для Ρ€Π°Π·Π½Ρ‹Ρ… компСнсационных Π±Π»ΠΎΠΊΠΎΠ² установлСны Ρ€Π°Π·Π½Ρ‹Π΅ ΡƒΡ€ΠΎΠ²Π½ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… объСмов гидравличСских ΠΏΠΎΡ‚Π΅Ρ€ΡŒ, Ρ‡Ρ‚ΠΎ связано с энСргозатратами ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΏΠ΅Ρ€Π΅ΠΊΠ°Ρ‡ΠΊΠΈ Π½Π΅Ρ„Ρ‚ΠΈ. Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· экономичСской эффСктивности позволяСт Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π΄ΡƒΠ³ΠΎΠΎΠ±Ρ€Π°Π·Π½Ρ‹Π΅ компСнсационныС Π±Π»ΠΎΠΊΠΈ Π² качСствС пСрспСктивной конструкции с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ стратСгичСских Π·Π°Π΄Π°Ρ‡ Π² части энСргоэффСктивности ΠΈ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды Π² арктичСской Π·ΠΎΠ½Π΅.The relevance of the research is conditioned by a decrease in specific amount of metal of aboveground linear section of heated oil transportation pipeline and reduction of its operational cost depending on the choice of expansion joint design. Goal: to determine an optimal design of expansion joint of the pipeline aboveground linear section of oil pipeline taking into account the effect of temperature parameters of pumped medium under condition of saving productive resources. Objects: hot oil pipeline, U-, S-shaped, tapered, ring expansion joints. Methods: modelling of the aboveground pipeline section located in cryolitic zone using the method of finite element method integrated into ANSYS Workbench and comparative analysis of the functions obtained to choose the optimal engineering solution. Results. Strength analysis of different designs of expansion units has shown that the maximum stress and displacements take place due to the changes in condition of oil pumping. The results of the data obtained were taken as a basis for choice of optimal geometric sizes of expansion joints taken into consideration in construction of the aboveground pipeline section of a given length. The technological parameters of linear section of oil pipeline portion were calculated with respect to occupied area that directly influencing the square of the research object. For different expansion joints there are various rates of hydraulic losses explained by energy expenditure of oil pumping operator. Comparative analysis of cost effectiveness allowed considering arch-shaped expansion joints as a perspective construction taking into account the strategic tasks of energy efficiency and environmental protection in the Arctic zone

    The neurobiological basis of narcolepsy

    No full text
    corecore