6 research outputs found
Analysis of efficiency of applying cycling in reservoir development of gas condensate
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ΅ΠΌ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ Π³Π°Π·ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ½ΡΡ
Π·Π°Π»Π΅ΠΆΠ΅ΠΉ Π½Π° ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΡΡ
Π½Π΅ΡΡΠΈ ΠΈ Π³Π°Π·Π° Π½Π°Π±Π»ΡΠ΄Π°ΡΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΡ ΡΠ΅ΡΡΠΎΠ³ΡΠ°Π΄Π½ΠΎΠΉ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΈΠΈ, Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
Π² ΠΏΠ»Π°ΡΡΠ΅ Π±Π΅Π·Π²ΠΎΠ·Π²ΡΠ°ΡΠ½ΠΎ ΡΠ΅ΡΡΡΡΡΡ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΎΠ±ΡΠ΅ΠΌΡ Π²ΡΡΠΎΠΊΠΎΠΊΠΈΠΏΡΡΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ Π‘[5+], Π΄ΠΎΠ±ΡΡΠ° ΠΊΠΎΡΠΎΡΡΡ
ΡΠ²Π»ΡΠ»Π°ΡΡ Π±Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΌ Π΄ΠΎΡ
ΠΎΠ΄Π½ΡΠΌ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π΄Π»Ρ Π½Π΅ΡΡΠ΅Π³Π°Π·ΠΎΠ²ΡΡ
ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ. ΠΠ±ΡΠΈΠ΅ Π·Π°ΠΏΠ°ΡΡ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ° Π² Π ΠΎΡΡΠΈΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΡΡ ΠΎΠΊΠΎΠ»ΠΎ 2 ΠΌΠ»ΡΠ΄ Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π³Π°Π·ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΡΡ
ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π΄ΠΎΠ±ΡΡΠΈ. Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°ΠΉΠΊΠ»ΠΈΠ½Π³-ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Π³Π°Π·ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ½ΠΎΠΉ Π·Π°Π»Π΅ΠΆΠΈ. ΠΠ±ΡΠ΅ΠΊΡ: ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ N, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ΅ Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ ΠΠΎΡΡΠΎΡΠ½ΠΎΠΉ Π‘ΠΈΠ±ΠΈΡΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ: ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ΅, Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π°Π·ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ½ΠΎΠΉ Π·Π°Π»Π΅ΠΆΠΈ Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π³Π°Π·ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΎΠ²ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΠΌ ΡΠΎΡΡΠ°Π²ΠΎΠΌ ΠΏΡΠΎΠ± Π³Π°Π·Π° ΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ°, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ Π³Π°Π·ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ. ΠΠΎΡΡΡΠΎΠ΅Π½Π° ΡΠΏΡΠΎΡΠ΅Π½Π½Π°Ρ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΉ Π·Π°Π»Π΅ΠΆΠΈ, Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΎ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π΅Π΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Π³Π°Π·ΠΎΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ½ΠΎΠΉ Π·Π°Π»Π΅ΠΆΠΈ, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠ°, ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π‘[2-]Π‘[4] ΠΈ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠ°ΡΠΎ-Π³Π°Π·ΠΎΠ²ΡΠΉ ΡΠ°ΠΊΡΠΎΡ, Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
ΡΠ°Π±ΠΎΡΡ Π΄ΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΠΉΠΊΠ»ΠΈΠ½Π³-ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡΠΎΠ΄Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ Π‘[5+] ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΅ΡΠ°ΡΡ ΡΡΠ΄ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π΄Π°Ρ. ΠΠΎΠ·ΠΌΠΎΠΆΠ½Π° Π°Π΄Π°ΠΏΡΠ°ΡΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎΠ΄ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΡΠ΅ Π³ΠΎΡΠ½ΠΎ-Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ Ρ ΡΠ΅Π»ΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π½Π° ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΈ ΠΠ°ΠΏΠ°Π΄Π½ΠΎ-Π‘ΠΈΠ±ΠΈΡΡΠΊΠΎΠΉ ΠΈ Π΄ΡΡΠ³ΠΈΡ
Π½Π΅ΡΡΠ΅Π³Π°Π·ΠΎΠ½ΠΎΡΠ½ΡΡ
ΠΏΡΠΎΠ²ΠΈΠ½ΡΠΈΠΉ.The relevance of the research is conditioned by the processes of retrograde condensation while developing gas-condensate reservoirs at oil and gas fields. Due to these processes the reservoir losses its significant volumes of high-boiling components of Π‘[5+] hydrocarbon group, the production of which would be an additional income source for oil companies. The total reserves of gas condensate in Russia is about two billion tons. Therefore, to solve the problem of the fullest extraction of gas-condensate reservoir components it is necessary to implement new production methods. The research aim is to justify the efficiency of cycling technology in gas-condensate reservoir development. Subject: N field located in the territory of the Eastern Siberia. Methods: compositional, geologic, and hydrodynamic simulation of gas-condensate reservoir Results. The paper presents the results of gas-condensate formation fluid compositional simulation in accordance with gas and condensate sample composition as well as gas-condensate study. Simplified geologic model of studied reservoir has been built and hydrodynamic simulation of its condition has been performed for different recovery mechanisms. Comparative analysis of gas condensate reservoir development parameters (condensate recovery factor, Π‘[2-]Π‘[4] recovery factor, and condensate-gas factor) at different recovery mechanisms proved that application of cycling results in increase of extraction of hydrocarbon group Π‘[5+] component and allows solving a number of economic and environmental problems. It is possible to adapt the model to the required geologic conditions to use the given technology in the territory of Eastern Siberia and other petroleum provinces
On equivalence of gluon-loop exchange in the inelastic processes in perturbative QCD to pion exchange in
We consider the hadronβhadron inelastic scattering in the framework of QCD perturbation theory. It is shown that in QCD, due to conservation of color, the tree-level diagrams of inelastic scattering are prohibited and one has to deal with the diagrams with loops. We examine the simplest type of such diagrams, where the diagram can be split into blocks, so that the integration over four-momenta of virtual particles in each block can be done independently. It is shown that for these diagrams the squared absolute value of scattering amplitude has a maximum point, similar to that observed earlier in ΙΈ3 model, if one takes into account the relations between the arguments of scattering amplitude, imposed by the energy-momentum conservation law. This enables to apply the Laplaceβs method for the calculation of cross section of hadronβhadron inelastic scattering. It is shown that the diagrams of gluon-loop exchange in QCD are equivalent to the diagrams of pion exchange in ΙΈ3 theory, whereby the new mechanism of cross section growth, discovered earlier in ΙΈ3 theory, takes place also in the perturbative QCD. The latter may explain the origin of experimentally-observed growth of cross section of hadronβhadron inelastic scattering as function of energy of colliding hadrons. The discovered mechanism canβt emerge in any Regge-based model due to the premises on the particle kinematics, made in these models
On equivalence of gluon-loop exchange in the inelastic processes in perturbative QCD to pion exchange in ΙΈ3 theory
We consider the hadronβhadron inelastic scattering in the framework of QCD perturbation theory. It is shown that in QCD, due to conservation of color, the tree-level diagrams of inelastic scattering are prohibited and one has to deal with the diagrams with loops. We examine the simplest type of such diagrams, where the diagram can be split into blocks, so that the integration over four-momenta of virtual particles in each block can be done independently. It is shown that for these diagrams the squared absolute value of scattering amplitude has a maximum point, similar to that observed earlier in ΙΈ3 model, if one takes into account the relations between the arguments of scattering amplitude, imposed by the energy-momentum conservation law. This enables to apply the Laplaceβs method for the calculation of cross section of hadronβhadron inelastic scattering. It is shown that the diagrams of gluon-loop exchange in QCD are equivalent to the diagrams of pion exchange in ΙΈ3 theory, whereby the new mechanism of cross section growth, discovered earlier in ΙΈ3 theory, takes place also in the perturbative QCD. The latter may explain the origin of experimentally-observed growth of cross section of hadronβhadron inelastic scattering as function of energy of colliding hadrons. The discovered mechanism canβt emerge in any Regge-based model due to the premises on the particle kinematics, made in these models
Choice of optimal design of expansion joint in construction of aboveground linear section of oil pipeline
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ΅ΠΌΠΊΠΎΡΡΠΈ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅ΡΡΠ΅ΠΏΡΠΎΠ²ΠΎΠ΄Π° Π΄Π»Ρ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠΈΡΠΎΠ²ΠΊΠΈ Π½Π°Π³ΡΠ΅ΡΠΎΠΉ Π½Π΅ΡΡΠΈ ΠΈ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π·Π°ΡΡΠ°Ρ Π½Π° Π΅Π³ΠΎ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ±ΠΎΡΠ° ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ°. Π¦Π΅Π»Ρ: ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΎΡΠ° ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅ΡΡΠ΅ΠΏΡΠΎΠ²ΠΎΠ΄Π° Ρ ΡΡΠ΅ΡΠΎΠΌ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΠ΅ΡΠ΅ΠΊΠ°ΡΠΈΠ²Π°Π΅ΠΌΠΎΠΉ ΡΡΠ΅Π΄Ρ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ±Π΅ΡΠ΅ΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠ΅ΡΡΡΡΠΎΠ². ΠΠ±ΡΠ΅ΠΊΡΡ: Π½Π΅ΡΡΠ΅ΠΏΡΠΎΠ²ΠΎΠ΄ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΠΊΠ°ΡΠΊΠΈ Π³ΠΎΡΡΡΠ΅ΠΉ Π½Π΅ΡΡΠΈ, Π-, S-ΠΎΠ±ΡΠ°Π·Π½ΡΠΉ, ΡΡΠ°ΠΏΠ΅ΡΠΈΠ΅Π²ΠΈΠ΄Π½ΡΠΉ ΠΈ Π΄ΡΠ³ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠΉ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π±Π»ΠΎΠΊΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ: ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°ΡΡΠΊΠ° Π½Π΅ΡΡΠ΅ΠΏΡΠΎΠ²ΠΎΠ΄Π°, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΠΊΡΠΈΠΎΠ»ΠΈΡΠΎΠ·ΠΎΠ½Ρ, ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π² ANSYS Workbench, ΠΈ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠ΅ΠΉ Π΄Π»Ρ Π²ΡΠ±ΠΎΡΠ° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΎΡΠ½ΠΎΡΡΠ½ΠΎΠΉ ΡΠ°ΡΡΠ΅Ρ ΡΠ°Π·Π½ΡΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΠΈΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΉ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π±Π»ΠΎΠΊΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π» ΠΎΠ±ΡΠ΅ΠΌΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΡ
Π²ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΠΏΠ΅ΡΠ΅ΠΊΠ°ΡΠΊΠΈ ΠΏΠΎΠ΄ΠΎΠ³ΡΠ΅ΡΠΎΠΉ Π½Π΅ΡΡΠΈ ΠΏΠΎ ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌΡ ΡΡΠ°ΡΡΠΊΡ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅ΡΡΠ΅ΠΏΡΠΎΠ²ΠΎΠ΄Π°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Ρ Π² ΠΎΡΠ½ΠΎΠ²Ρ Π²ΡΠ±ΠΎΡΠ° ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΠΏΠΎΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΎΡΠΎΠ², ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ
ΠΏΡΠΈ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°ΡΡΠΊΠ° Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠΎΡΡΠΆΠ΅Π½Π½ΠΎΡΡΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½ ΡΠ°ΡΡΠ΅Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΡΠΌΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ ΡΡΠ°ΡΡΠΊΠ° Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ Π½Π΅ΡΡΠ΅ΠΏΡΠΎΠ²ΠΎΠ΄Π° Ρ ΡΡΠ΅ΡΠΎΠΌ Π·Π°Π½ΠΈΠΌΠ°Π΅ΠΌΠΎΠΉ ΠΏΠΎΠ΄ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΎΠ½Π½ΡΠΌ ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠ»ΠΎΡΠ°Π΄ΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π΅ΠΌΠ»Π΅ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ»Ρ ΡΠ°Π·Π½ΡΡ
ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π±Π»ΠΎΠΊΠΎΠ² ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΡΠ°Π·Π½ΡΠ΅ ΡΡΠΎΠ²Π½ΠΈ ΡΠΎΡΠΌΠΈΡΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ΅ΠΌΠΎΠ² Π³ΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΡΠ΅ΡΡ, ΡΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΡΠ½Π΅ΡΠ³ΠΎΠ·Π°ΡΡΠ°ΡΠ°ΠΌΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΎΡΠ° ΠΏΠ΅ΡΠ΅ΠΊΠ°ΡΠΊΠΈ Π½Π΅ΡΡΠΈ. Π‘ΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π΄ΡΠ³ΠΎΠΎΠ±ΡΠ°Π·Π½ΡΠ΅ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π±Π»ΠΎΠΊΠΈ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΡΡΠ°ΡΠ΅Π³ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π΄Π°Ρ Π² ΡΠ°ΡΡΠΈ ΡΠ½Π΅ΡΠ³ΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈ Π·Π°ΡΠΈΡΡ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ Π² Π°ΡΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·ΠΎΠ½Π΅.The relevance of the research is conditioned by a decrease in specific amount of metal of aboveground linear section of heated oil transportation pipeline and reduction of its operational cost depending on the choice of expansion joint design. Goal: to determine an optimal design of expansion joint of the pipeline aboveground linear section of oil pipeline taking into account the effect of temperature parameters of pumped medium under condition of saving productive resources. Objects: hot oil pipeline, U-, S-shaped, tapered, ring expansion joints. Methods: modelling of the aboveground pipeline section located in cryolitic zone using the method of finite element method integrated into ANSYS Workbench and comparative analysis of the functions obtained to choose the optimal engineering solution. Results. Strength analysis of different designs of expansion units has shown that the maximum stress and displacements take place due to the changes in condition of oil pumping. The results of the data obtained were taken as a basis for choice of optimal geometric sizes of expansion joints taken into consideration in construction of the aboveground pipeline section of a given length. The technological parameters of linear section of oil pipeline portion were calculated with respect to occupied area that directly influencing the square of the research object. For different expansion joints there are various rates of hydraulic losses explained by energy expenditure of oil pumping operator. Comparative analysis of cost effectiveness allowed considering arch-shaped expansion joints as a perspective construction taking into account the strategic tasks of energy efficiency and environmental protection in the Arctic zone