110 research outputs found

    Hydrodynamical modeling of the deconfinement phase transition and explosive hadronization

    Get PDF
    Dynamics of relativistic heavy-ion collisions is investigated on the basis of a simple (1+1)-dimensional hydrodynamical model in light-cone coordinates. The main emphasis is put on studying sensitivity of the dynamics and observables to the equation of state and initial conditions. Low sensitivity of pion rapidity spectra to the presence of the phase transition is demonstrated, and some inconsistencies of the equilibrium scenario are pointed out. Possible non-equilibrium effects are discussed, in particular, a possibility of an explosive disintegration of the deconfined phase into quark-gluon droplets. Simple estimates show that the characteristic droplet size should decrease with increasing the collective expansion rate. These droplets will hadronize individually by emitting hadrons from the surface. This scenario should reveal itself by strong non-statistical fluctuations of observables. Critical Point and Onset of Deconfinement 4th International Workshop July 9-13 2007 GSI Darmstadt,German

    MCHIT - Monte Carlo model for proton and heavy-ion therapy

    Full text link
    We study the propagation of nucleons and nuclei in tissue-like media within a Monte Carlo Model for Heavy-ion Therapy (MCHIT) based on the GEANT4 toolkit (version 8.2). The model takes into account fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments. Model predictions are validated with available experimental data obtained for water and PMMA phantoms irradiated by monoenergetic carbon-ion beams. The MCHIT model describes well (1) the depth-dose distributions in water and PMMA, (2) the doses measured for fragments of certain charge, (3) the distributions of positron emitting nuclear fragments produced by carbon-ion beams, and (4) the energy spectra of secondary neutrons measured at different angles to the beam direction. Radial dose profiles for primary nuclei and for different projectile fragments are calculated and discussed as possible input for evaluation of biological dose distributions. It is shown that at the periphery of the transverse dose profile close to the Bragg peak the dose from secondary nuclear fragments is comparable to the dose from primary nuclei.Comment: Talk given at International Conference on Nuclear Data for Science and Technology ND-2007, Nice, France, April 22-27, 200

    Thermodynamics of dense hadronic matter in a parity doublet model

    Full text link
    We study thermodynamics of nuclear matter in a two-flavored parity doublet model within the mean field approximation. Parameters of the model are chosen to reproduce correctly the properties of the nuclear ground state. The model predicts two phase transitions in nuclear matter, a liquid-gas phase transition at normal nuclear density and a chiral transition at higher density. At finite temperature the pion decay constant exhibits a considerable reduction at intermediate values of chemical potential, which is traced back to the presence of the liquid-gas transition, and approaches zero at higher chemical potential associated with the chiral symmetry restoration. A "transition" from meson-rich to baryon-rich matter is also discussed.Comment: 7 pages, 4 figure

    Nonlinear oscillations of compact stars in the vicinity of the maximum mass configuration

    Full text link
    We solve the dynamical GR equations for the spherically symmetric evolution of compact stars in the vicinity of the maximum mass, for which instability sets in according to linear perturbation theory. The calculations are done with the analytical Zeldovich-like EOS P=a(rho-rho_0) and with the TM1 parametrisation of the RMF model. The initial configurations for the dynamical calculations are represented by spherical stars with equilibrium density profile, which are perturbed by either (i) an artificially added inward velocity field proportional to the radial coordinate, or (ii) a rarefaction corresponding to a static and expanded star. These configurations are evolved using a one-dimensional GR hydro code for ideal and barotropic fluids. Depending on the initial conditions we obtain either stable oscillations or the collapse to a black hole. The minimal amplitude of the perturbation, needed to trigger gravitational collapse is evaluated. The approximate independence of this energy on the type of perturbation is pointed out. At the threshold we find type I critical behaviour for all stellar models considered and discuss the dependence of the time scaling exponent on the baryon mass and EOS.Comment: 15 pages, 8 figures, accepted for publication in EP
    corecore