2 research outputs found

    Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis

    No full text
    The review summarizes the results of experimental and clinical studies aimed at elucidating the causes and pathophysiological mechanisms of the development of endocrine pathology in children. The modern data on the role of epigenetic influences in the early ontogenesis of unfavorable factors that violate the patterns of the formation of regulatory mechanisms during periods of critical development of fetal organs and systems and contribute to the delayed development of pathological conditions are considered. The mechanisms of the participation of melatonin in the regulation of metabolic processes and the key role of maternal melatonin in the formation of the circadian system of regulation in the fetus and in the protection of the genetic program of its morphofunctional development during pregnancy complications are presented. Melatonin, by controlling DNA methylation and histone modification, prevents changes in gene expression that are directly related to the programming of endocrine pathology in offspring. Deficiency and absence of the circadian rhythm of maternal melatonin underlies violations of the genetic program for the development of hormonal and metabolic regulatory mechanisms of the functional systems of the child, which determines the programming and implementation of endocrine pathology in early ontogenesis, contributing to its development in later life. The significance of this factor in the pathophysiological mechanisms of endocrine disorders determines a new approach to risk assessment and timely prevention of offspring diseases even at the stage of family planning

    Some Results of Photometric Measurements of Ionospheric Artificial Airglow at 557.7 and 630 nm Lines of Atomic Oxygen Caused by High-Frequency Radio Emission of the SURA Facility during Development of Sporadic E Layer

    No full text
    The results of analysis of the experimental data collected on 5 September 2021 on 557.7 and 630 nm artificial airglow of the ionosphere induced by powerful HF radio waves at the SURA facility are presented. For optical measurements, a photometric suite located directly next to the SURA facility was used. Fast variations in the atmospheric emission intensity at 557.7 nm, 630 nm, and 391.4 nm with a three-channel photometer and spatial–temporal variations in the 557.7 nm with a CCD camera were measured. An ionospherically reflected pump wave and the stimulated electromagnetic emission (SEE) were recorded. Background ionospheric conditions were registered with ionosonde. For the first time, an increase in the 557.7 nm emission intensity induced by the SURA facility radiation was found concurrently with a partial blocking ionosphere in the F-region and suppression HF-induced phenomena in the F-region (the 630 nm airglow increase and SEE generation, powerful radio wave anomalous absorption) during the sporadic E-layer (Es) development. Additionally, we managed to obtain images showing moving spots of the SURA-induced 557.7 nm emission increased intensity at the Es layer heights
    corecore