2 research outputs found

    Comparative Studies of the Physical, Mechanical and Chemical Properties of Hybrid Coatings for Medical Implants

    Get PDF
    In the work the physical, mechanical and chemical properties of oxide and calcium-phosphate coatings formed by the microarc oxidation and radio-frequency magnetron sputtering methods, or their combination were studied. It is shown that combining the advantages of various technologies enables one to obtain a wide range of hybrid coatings used for various strategies of osteosynthesis. The calcium phosphate coatings obtained by the radio-frequency magnetron sputtering methods were chosen as coatings on cortical screws. The hybrid coatings obtained by a combination of microarc oxidation method and radio-frequency magnetron sputtering method were recommended for intramedullary implants. For extramedullary implants, the most optimal coatings are the coatings formed by radio-frequency magnetron sputtering with an intermediate TiO[2] sublayer

    Hybrid calcium phosphate coatings for implants

    Get PDF
    Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 [mu]m) and surface morphology with the thickness greater than 5 [mu]m. The thickness of Ti primer layer is 5-40 [mu]m. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load F[max]=300 mN. It was 3.1Β±0.8 GPa, surface layer elasticity modulus E=110Β±20 GPa, roughness R[a]=0.9Β±0.1 [mu]m, R[z]=7.5Β±0.2 [mu]m, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6Β±0.1 [mu]m and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coatingis biocompatible and produces fibrointegration processes
    corecore