8,060 research outputs found
Randomized parallel approximations to max flow
The final publication is available at link.springer.comPeer ReviewedPostprint (author's final draft
Parallel algorithms for two processors precedence constraint scheduling
The final publication is available at link.springer.comPeer ReviewedPostprint (author's final draft
Convective regularization for optical flow
We argue that the time derivative in a fixed coordinate frame may not be the
most appropriate measure of time regularity of an optical flow field. Instead,
for a given velocity field we consider the convective acceleration which describes the acceleration of objects moving according to
. Consequently we investigate the suitability of the nonconvex functional
as a regularization term for optical flow. We
demonstrate that this term acts as both a spatial and a temporal regularizer
and has an intrinsic edge-preserving property. We incorporate it into a
contrast invariant and time-regularized variant of the Horn-Schunck functional,
prove existence of minimizers and verify experimentally that it addresses some
of the problems of basic quadratic models. For the minimization we use an
iterative scheme that approximates the original nonlinear problem with a
sequence of linear ones. We believe that the convective acceleration may be
gainfully introduced in a variety of optical flow models
On parallel versus sequential approximation
In this paper we deal with the class NCX of NP Optimization problems that are approximable within constant ratio in NC. This class is the parallel counterpart of the class APX. Our main motivation here is to reduce the study of sequential and parallel approximability to the same framework. To this aim, we first introduce a new kind of NC-reduction that preserves the relative error of the approximate solutions and show that the class NCX has {em complete} problems under this reducibility.
An important subset of NCX is the class MAXSNP, we show that MAXSNP-complete problems have a threshold on the parallel approximation ratio that is, there are positive constants , such that although the problem can be approximated in P within it cannot be approximated in NC within epsilon_2$, unless P=NC. This result is attained by showing that the problem of approximating the value obtained through a non-oblivious local search algorithm is P-complete, for some values of the approximation ratio. Finally, we show that approximating through non-oblivious local search is in average NC.Postprint (published version
Can We Programme Utopia? The Influence of the Digital Neoliberal Discourse on Utopian Videogames
This article has a dual purpose. The first is to establish the relationship between
videogames and utopia in the neoliberal era and clarify the origins of this compromise in the
theoretical dimension of game studies. The second is to examine the ways in which there
has been an application of the utopian genre throughout videogame history (the style of procedural rhetoric and the subgenre of walking simulator) and the way in which the material
dimension of the medium ideologically updates the classical forms of that genre, be it
through activation or deactivation. The article concludes with an evaluation of the degree in
which the neoliberal discourse interferes with the understanding of utopia on behalf of the
medium and with its imaginary capabilities to allow for an effective change in social reality
The parallel approximability of a subclass of quadratic programming
In this paper we deal with the parallel approximability of a special class of Quadratic Programming (QP), called Smooth Positive Quadratic Programming. This subclass of QP is obtained by imposing restrictions on the coefficients of the QP instance. The Smoothness condition restricts the magnitudes of the coefficients while the positiveness requires that all the coefficients be non-negative. Interestingly, even with these restrictions several combinatorial problems can be modeled by Smooth QP. We show NC Approximation Schemes for the instances of Smooth Positive QP. This is done by reducing the instance of QP to an instance of Positive Linear Programming, finding in NC an approximate fractional solution to the obtained program, and then rounding the fractional solution to an integer approximate solution for the original problem. Then we show how to extend the result for positive instances of bounded degree to Smooth Integer Programming problems. Finally, we formulate several important combinatorial problems as Positive Quadratic Programs (or Positive Integer Programs) in packing/covering form and show that the techniques presented can be used to obtain NC Approximation Schemes for "dense" instances of such problems.Peer ReviewedPostprint (published version
- …