2 research outputs found
Occupational Stress-Related Sleep Anomaly in Frontline COVID-19 Health Workers: The Possible Underlying Mechanisms
COVID-19 is a highly contagious viral illness that has claimed millions of lives worldwide. Since its emergence, it has exerted a negative impact on many sectors globally without the exception of frontline COVID-19 healthcare providers. Specifically, in frontline COVID-19 healthcare workers, occupational stress-related sleep disorders such as insomnia and daytime somnolence have been extensively reported and were characterized by neuro-immunological changes. However, the possible mechanisms that underlie the sleep disorders have not been elucidated. The review was designed to highlight possible sleep mechanisms responsible for insomnia and daytime somnolence reported in frontline COVID-19 health workers. Available evidence shows that emotional perturbation, hypertension, chronobiological disruption and prolonged exposure to artificial light are among the events orchestrating occupational-stress-related sleep disorders in frontline COVID-19 healthcare workers. Anxiety-associated sleep anomaly is attributable to stimulation of the reticular activating system which occurs as a result of activation of noradrenergic fiber and sympatho-adrenal axis. Another mechanism includes depletion of hippocampal and brain glycogen by anxiety-induced activation of corticotropin releasing hormone (CRH)-secreting brain neurons and hypothalamic-corticotropic-adrenal cortex axis. Spontaneous discharge of noradrenergic fiber during basal state and changes in normal secretory rhythm of hypnosis-related chemical messengers may be responsible for hypertension- and chronobiological disruption-induced sleep disorders, respectively. Lastly, prolonged light exposure-induced suppression of melatonin secretion may elicit disruption of normal circadian sleep
The role of Allium cepa on aluminum-induced reproductive dysfunction in experimental male rat models
Aim: Reproductive toxicity is a major challenge associated with aluminum (Al) exposure. Studies that associated Al with reproductive dysfunction did not account for the possible influence of Allium cepa extract. This study, therefore, investigates the influence of A. cepa on aluminum-induced reproductive dysfunction. Materials and Methods: Six male rats per group were assigned to one of the following four treatment groups: The control animals were on control diet. A. cepa-treated rats received 1 ml of the extract/100 g body weight (BW), Al-treated rats received 100 mg AlCl 3 /kg BW, and A.cepa+Al received 1 ml of the extract/100 g BW plus 100 mg AlCl 3 /kg BW. Rats were orally administered their respective doses. A. cepa treatment was for 8 weeks, while Al treatment was for the last 3 days of the experimental period. Results: Results obtained showed that Al significantly decreased (P < 0.05) plasma testosterone, follicular stimulating hormone (FSH), luteinizing hormone (LH), sperm count, motility, morphology and viability, superoxide dismutase (SOD) and catalase (CAT) activities, while lipid peroxidation index [malondialdehyde (MDA)] was significantly (P < 0.05) increased. Reproductive hormones (except testosterone), sperm qualities, and enzymatic antioxidants were significantly (P < 0.05) increased in A. cepa-treated rats and A. cepa plus Al-treated rats, while MDA was significantly (P < 0.05) improved. Weights of testes were comparable in all groups. Conclusion: It is thus suggested that Al exerts reproductive dysfunction by oxidative damage. A. cepa antagonizes the toxic effects of AlCl 3 and improves the antioxidant status and sperm quality of male rat. However, testosterone level did not increase with A. cepa treatment