6 research outputs found

    Countries with delayed COVID-19 introduction - characteristics, drivers, gaps, and opportunities.

    Get PDF
    BACKGROUND: Three months after the first reported cases, COVID-19 had spread to nearly 90% of World Health Organization (WHO) member states and only 24 countries had not reported cases as of 30 March 2020. This analysis aimed to 1) assess characteristics, capability to detect and monitor COVID-19, and disease control measures in these 24 countries, 2) understand potential factors for the reported delayed COVID-19 introduction, and 3) identify gaps and opportunities for outbreak preparedness, particularly in low and middle-income countries (LMICs). We collected and analyzed publicly available information on country characteristics, COVID-19 testing, influenza surveillance, border measures, and preparedness activities in these countries. We also assessed the association between the temporal spread of COVID-19 in all countries with reported cases with globalization indicator and geographic location. RESULTS: Temporal spreading of COVID-19 was strongly associated with countries' globalization indicator and geographic location. Most of the 24 countries with delayed COVID-19 introduction were LMICs; 88% were small island or landlocked developing countries. As of 30 March 2020, only 38% of these countries reported in-country COVID-19 testing capability, and 71% reported conducting influenza surveillance during the past year. All had implemented two or more border measures, (e.g., travel restrictions and border closures) and multiple preparedness activities (e.g., national preparedness plans and school closing). CONCLUSIONS: Limited testing capacity suggests that most of the 24 delayed countries may have lacked the capability to detect and identify cases early through sentinel and case-based surveillance. Low global connectedness, geographic isolation, and border measures were common among these countries and may have contributed to the delayed introduction of COVID-19 into these countries. This paper contributes to identifying opportunities for pandemic preparedness, such as increasing disease detection, surveillance, and international collaborations. As the global situation continues to evolve, it is essential for countries to improve and prioritize their capacities to rapidly prevent, detect, and respond, not only for COVID-19, but also for future outbreaks

    Timing of seasonal influenza epidemics for 25 countries in Africa during 2010-19: a retrospective analysis.

    Get PDF
    BACKGROUND: Using country-specific surveillance data to describe influenza epidemic activity could inform decisions on the timing of influenza vaccination. We analysed surveillance data from African countries to characterise the timing of seasonal influenza epidemics to inform national vaccination strategies. METHODS: We used publicly available sentinel data from African countries reporting to the WHO Global Influenza Surveillance and Response FluNet platform that had 3-10 years of data collected during 2010-19. We calculated a 3-week moving proportion of samples positive for influenza virus and assessed epidemic timing using an aggregate average method. The start and end of each epidemic were defined as the first week when the proportion of positive samples exceeded or went below the annual mean, respectively, for at least 3 consecutive weeks. We categorised countries into five epidemic patterns: northern hemisphere-dominant, with epidemics occurring in October-March; southern hemisphere-dominant, with epidemics occurring in April-September; primarily northern hemisphere with some epidemic activity in southern hemisphere months; primarily southern hemisphere with some epidemic activity in northern hemisphere months; and year-round influenza transmission without a discernible northern hemisphere or southern hemisphere predominance (no clear pattern). FINDINGS: Of the 34 countries reporting data to FluNet, 25 had at least 3 years of data, representing 46% of the countries in Africa and 89% of Africa's population. Study countries reported RT-PCR respiratory virus results for a total of 503 609 specimens (median 12 971 [IQR 9607-20 960] per country-year), of which 74 001 (15%; median 2078 [IQR 1087-3008] per country-year) were positive for influenza viruses. 248 epidemics occurred across 236 country-years of data (median 10 [range 7-10] per country). Six (24%) countries had a northern hemisphere pattern (Algeria, Burkina Faso, Egypt, Morocco, Niger, and Tunisia). Eight (32%) had a primarily northern hemisphere pattern with some southern hemisphere epidemics (Cameroon, Ethiopia, Mali, Mozambique, Nigeria, Senegal, Tanzania, and Togo). Three (12%) had a primarily southern hemisphere pattern with some northern hemisphere epidemics (Ghana, Kenya, and Uganda). Three (12%) had a southern hemisphere pattern (Central African Republic, South Africa, and Zambia). Five (20%) had no clear pattern (Côte d'Ivoire, DR Congo, Madagascar, Mauritius, and Rwanda). INTERPRETATION: Most countries had identifiable influenza epidemic periods that could be used to inform authorities of non-seasonal and seasonal influenza activity, guide vaccine timing, and promote timely interventions. FUNDING: None. TRANSLATIONS: For the Berber, Luganda, Xhosa, Chewa, Yoruba, Igbo, Hausa and Afan Oromo translations of the abstract see Supplementary Materials section

    Influenza surveillance capacity improvements in Africa during 2011-2017.

    Get PDF
    BACKGROUND: Influenza surveillance helps time prevention and control interventions especially where complex seasonal patterns exist. We assessed influenza surveillance sustainability in Africa where influenza activity varies and external funds for surveillance have decreased. METHODS: We surveyed African Network for Influenza Surveillance and Epidemiology (ANISE) countries about 2011-2017 surveillance system characteristics. Data were summarized with descriptive statistics and analyzed with univariate and multivariable analyses to quantify sustained or expanded influenza surveillance capacity in Africa. RESULTS: Eighteen (75%) of 24 ANISE members participated in the survey; their cumulative population of 710 751 471 represent 56% of Africa's total population. All 18 countries scored a mean 95% on WHO laboratory quality assurance panels. The number of samples collected from severe acute respiratory infection case-patients remained consistent between 2011 and 2017 (13 823 vs 13 674 respectively) but decreased by 12% for influenza-like illness case-patients (16 210 vs 14 477). Nine (50%) gained capacity to lineage-type influenza B. The number of countries reporting each week to WHO FluNet increased from 15 (83%) in 2011 to 17 (94%) in 2017. CONCLUSIONS: Despite declines in external surveillance funding, ANISE countries gained additional laboratory testing capacity and continued influenza testing and reporting to WHO. These gains represent important achievements toward sustainable surveillance and epidemic/pandemic preparedness

    Leveraging International Influenza Surveillance Systems and Programs during the COVID-19 Pandemic.

    Get PDF
    A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential

    CDC's COVID-19 International Vaccine Implementation and Evaluation Program and Lessons from Earlier Vaccine Introductions.

    Get PDF
    The US Centers for Disease Control and Prevention (CDC) supports international partners in introducing vaccines, including those against SARS-CoV-2 virus. CDC contributes to the development of global technical tools, guidance, and policy for COVID-19 vaccination and has established its COVID-19 International Vaccine Implementation and Evaluation (CIVIE) program. CIVIE supports ministries of health and their partner organizations in developing or strengthening their national capacities for the planning, implementation, and evaluation of COVID-19 vaccination programs. CIVIE's 7 priority areas for country-specific technical assistance are vaccine policy development, program planning, vaccine confidence and demand, data management and use, workforce development, vaccine safety, and evaluation. We discuss CDC's work on global COVID-19 vaccine implementation, including priorities, challenges, opportunities, and applicable lessons learned from prior experiences with Ebola, influenza, and meningococcal serogroup A conjugate vaccine introductions
    corecore