39 research outputs found

    11β-Hydroxysteroid Dehydrogenase-1 Is a Novel Regulator of Skin Homeostasis and a Candidate Target for Promoting Tissue Repair

    Get PDF
    11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the interconversion of cortisone and cortisol within the endoplasmic reticulum. 11β-HSD1 is expressed widely, most notably in the liver, adipose tissue, and central nervous system. It has been studied intensely over the last 10 years because its activity is reported to be increased in visceral adipose tissue of obese people. Epidermal keratinocytes and dermal fibroblasts also express 11β-HSD1. However, the function of the enzymatic activity 11β-HSD1 in skin is not known. We found that 11β-HSD1 was expressed in human and murine epidermis, and this expression increased as keratinocytes differentiate. The expression of 11β-HSD1 by normal human epidermal keratinocytes (NHEKs) was increased by starvation or calcium-induced differentiation in vitro. A selective inhibitor of 11β-HSD1 promoted proliferation of NHEKs and normal human dermal fibroblasts, but did not alter the differentiation of NHEKs. Topical application of selective 11β-HSD1 inhibitor to the dorsal skin of hairless mice caused proliferation of keratinocytes. Taken together, these data suggest that 11β-HSD1 is involved in tissue remodeling of the skin. This hypothesis was further supported by the observation that topical application of the selective 11β-HSD1 inhibitor enhanced cutaneous wound healing in C57BL/6 mice and ob/ob mice. Collectively, we conclude that 11β-HSD1 is negatively regulating the proliferation of keratinocytes and fibroblasts, and cutaneous wound healing. Hence, 11β-HSD1 might maintain skin homeostasis by regulating the proliferation of keratinocytes and dermal fibroblasts. Thus 11β-HSD1 is a novel candidate target for the design of skin disease treatments

    Quantum critical behavior of the hyperkagome magnet Mn3CoSi

    Get PDF
    β-Mn-type family alloys Mn3TX (T = Co, Rh, and Ir; X = Si and Ge) have a three-dimensional antiferromagnetic (AF) corner-shared triangular network, i.e., the hyperkagome lattice. The antiferromagnet Mn3RhSi shows magnetic short-range order over a wide temperature range of approximately 500 K above the Néel temperature TN of 190 K. In this family of compounds, as the lattice parameter decreases, the long-range magnetic ordering temperature decreases. Mn3CoSi has the smallest lattice parameter and the lowest TN in the family. The quantum critical point (QCP) from AF to the quantum paramagnetic state is expected near a cubic lattice parameter of 6.15 Å. Although the Néel temperature of Mn3CoSi is only 140 K, the emergence of the quantum critical behavior in Mn3CoSi is discussed. We study how the magnetic short-range order appears in Mn3CoSi by using neutron scattering, μSR, and bulk characterization such as specific heat capacity. According to the results, the neutron scattering intensity of the magnetic short-range order in Mn3CoSi does not change much at low temperatures from that of Mn3RhSi, although the μSR short-range order temperature of Mn3CoSi is largely suppressed to 240 K from that of Mn3RhSi. Correspondingly, the volume fraction of the magnetic short-range order regions, as shown by the initial asymmetry drop ratio of μSR above TN, also becomes small. Instead, the electronic-specific heat coefficient γ of Mn3CoSi is the largest in this Mn3T Si system, possibly due to the low-energy spin fluctuation near the quantum critical point

    A Case of Hyperparathyroidism due to a Large Intrathyroid Parathyroid Adenoma with Recurrent Episodes of Acute Pancreatitis

    No full text
    We report a case of a 66-year-old woman who developed hyperparathyroidism due to a large intrathyroid parathyroid adenoma with episodes of acute pancreatitis. She had previously been treated for acute pancreatitis twice. Serum calcium was 12.4 mg/dL, and intact parathyroid hormone was 253 pg/dL. Ultrasonography and computed tomography of the neck with contrast enhancement revealed a soft tissue mass (28 mm transverse diameter) within the left lobe of the thyroid. 99mTc-MIBI scintigraphy demonstrated focal accumulation due to increased radiotracer uptake in the left thyroid lobe. Left hemithyroidectomy was performed. Histopathology showed no signs of invasion, and this is consistent with parathyroid adenoma. Immunostaining was positive for expression of chromogranin A and parathyroid hormone. The patient had no episode of pancreatitis after the operation. In a patient with recurrent episodes of pancreatitis, the possibility of complication with hyperparathyroidism should be considered

    Diabetes mellitus impacts on expression of DNA mismatch repair protein PMS2 and tumor microenvironment in pancreatic ductal adenocarcinoma

    No full text
    ABSTRACT Aims/Introduction The mismatch repair (MMR) protein recognizes DNA replication errors and plays an important role in tumorigenesis, including pancreatic ductal adenocarcinoma (PDAC). Although PMS2, a MMR protein, is degraded under oxidative stress, the effects of diabetes are still unclear. Herein, we focused on whether diabetes affected MMR protein expression in PDAC. Materials and Methods Tissues from 61 surgically resected PDAC subjects were clinicopathologically analyzed. Immunohistochemical analysis was performed for MMR protein expression, oxidative stress, and immune cell infiltration. The change of MMR protein expression was assessed in PDAC cell lines under stimulation with 25 mM glucose and 500 μM palmitic acid. Survival curves were analyzed by the Kaplan–Meier method with the log‐rank test. Results Diabetes complicated with dyslipidemia significantly decreased the expression of PMS2 in PDAC tissues with an inverse correlation with the degree of oxidative stress. Palmitic acid combined with high glucose induced degradation of PMS2 protein, enhancing oxidative stress in vitro. CD8+ T‐cell infiltration was associated with a short duration of type 2 diabetes (≤4 years) and a low expression of PMS2 in PDAC tissues, while CD163+ tumor‐associated macrophage infiltration was increased with a long duration of diabetes (>4 years). A short duration of diabetes exhibited a better prognosis than nondiabetic subjects with PDAC (P < 0.05), while a long duration of diabetes had a worse prognosis (P < 0.05). Conclusions The different phases of diabetes have a major impact on PDAC by altering PMS2 expression and the tumor immune microenvironment, which can be targeted by an immune checkpoint inhibitor
    corecore