3 research outputs found

    Texture Design for Reducing Tactile Friction Independent of Sliding Orientation on Stainless Steel Sheet

    Get PDF
    Surface texture is important for contact mechanical and tribological phenomena such as the contact area and friction. In this research, three different types of geometrical microstructures were designed and fabricated by pulsed laser surface texturing as semi-symmetric (grooved channel), asymmetric fractal (Hilbert curve), and symmetric patterns (grid). A conventionally finished surface as a reference sample from the same stainless steel sheet material was compared. From the experimental approach, a multiaxis force/torque transducer was used to investigate the functionality of surface texture based on measuring the tactile friction in three different sliding directions: perpendicular, parallel, and 45° to the textures. According to the dynamic friction measurements, the grid texture was indeed orientation independent. The other samples showed orientation-dependent frictional behavior, especially the grooved channel texture and reference sample. Furthermore, an analytical approach was applied to estimate the values of the friction coefficient by the pressure distribution method. From both the experimental and analytical approaches, the grid pattern was validated to be the optimal texture design in the concern of friction reduction and orientation-independent behavior.Railway Engineerin

    Finger pad friction and tactile perception of laser treated, stamped and cold rolled micro-structured stainless steel sheet surfaces

    Get PDF
    Tactile perception is a complex system, which depends on frictional interactions between skin and counter-body. The contact mechanics of tactile friction is governed by many factors such as the state and properties of skin and counter-body. In order to discover the connection between perception and tactile friction on textured stainless steel sheets, both perception experiments (subjective) and tactile friction measurements (objective) were performed in this research. The perception experiments were carried out by using a panel test method to identify the perceived roughness, perceived stickiness and comfort level from the participants. For the friction experiments, tactile friction was measured by a multi-axis force/torque transducer in vivo. The perceived stickiness was illustrated as an effective subjective stimulus, which has a negative correlation to the comfort perception. No significant evidence was revealed to the connection between the perceived roughness and comfort perception, and this relationship may be influenced by the participants’ individual experience, gender and moisture level of skin. Furthermore, the kinetic tactile friction was concluded as an objective stimulus to the comfort perception with a negative correlation.Railway Engineerin

    Selection of micro-fabrication techniques on stainless steel sheet for skin friction

    No full text
    This review gives a concise introduction to the state-of-art techniques used for surface texturing, e.g., wet etching, plasma etching, laser surface texturing (LST), 3D printing, etc. In order to fabricate deterministic textures with the desired geometric structures and scales, the innovative texturing technologies are developed and extended. Such texturing technology is an emerging frontier with revolutionary impact in industrial and scientific fields. With the help of the latest fabrication technologies, surface textures are scaling down and more complex deterministic patterns may be fabricated with desired functions, e.g., lotus effect (hydrophobic), gecko feet (adhesive), haptic tactile, etc. The objective of this review is to explore the surface texturing technology and its contributions to the applications.Railway Engineerin
    corecore