20 research outputs found

    A case study of new assessment and training of unilateral spatial neglect in stroke patients: effect of visual image transformation and visual stimulation by using a head mounted display system (HMD)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unilateral spatial neglect (USN) is most damaging to an older stroke patient who also has a lower performance in their activities of daily living or those elderly who are still working. The purpose of this study was to understand more accurately pathology of USN using a new HMD system.</p> <p>Methods</p> <p>Two stroke patients (Subject A and B) participated in this study after gaining their informed consent and they all had Left USN as determined by clinical tests. Assessments of USN were performed by using the common clinical test (the line cancellation test) and six special tests by using HMD system in the object-centered coordinates (OC) condition and the egocentric coordinates (EC) condition. OC condition focused the test sheet only by a CCD. EC condition was that CCD can always follow the subject's movement. Moreover, the study focused on the effect of the reduced image condition of real image and the arrows.</p> <p>Results</p> <p>In Patient A who performed the common test and special tests of OC and EC conditions, the results showed that for the line cancellation test under the common condition, both of the percentage of the correct answers at the right and left sides in the test sheet was 100 percent. However, in the OC condition, the percentage of the correct answers at the left side in the test sheet was 44 percent and the right side was 94 percent. In the EC condition, the left side was 61 percent and the right side was 67 percent. In Patient B, according to the result of the use of reduced image condition and the arrows condition by HMD system, these line cancellation scores more increased than the score of the common test.</p> <p>Conclusions</p> <p>The results showed that the assessment of USN using an HMD system may clarify the left neglect area which cannot be easily observed in the clinical evaluation for USN. HMD may be able to produce an artificially versatile environment as compared to the common clinical evaluation and treatment.</p

    Topographic Spread of Inferior Colliculus Activation in Response to Acoustic and Intracochlear Electric Stimulation

    Full text link
    The design of contemporary multichannel cochlear implants is predicated on the presumption that they activate multiple independent sectors of the auditory nerve array. The independence of these channels, however, is limited by the spread of activation from each intracochlear electrode across the auditory nerve array. In this study, we evaluated factors that influence intracochlear spread of activation using two types of intracochlear electrodes: (1) a clinical-type device consisting of a linear series of ring contacts positioned along a silicon elastomer carrier, and (2) a pair of visually placed (VP) ball electrodes that could be positioned independently relative to particular intracochlear structures, e.g., the spiral ganglion. Activation spread was estimated by recording multineuronal evoked activity along the cochleotopic axis of the central nucleus of the inferior colliculus (ICC). This activity was recorded using silicon-based single-shank, 16-site recording probes, which were fixed within the ICC at a depth defined by responses to acoustic tones. After deafening, electric stimuli consisting of single biphasic electric pulses were presented with each electrode type in various stimulation configurations (monopolar, bipolar, tripolar) and/or various electrode orientations (radial, off-radial, longitudinal). The results indicate that monopolar (MP) stimulation with either electrode type produced widepread excitation across the ICC. Bipolar (BP) stimulation with banded pairs of electrodes oriented longitudinally produced activation that was somewhat less broad than MP stimulation, and tripolar (TP) stimulation produced activation that was more restricted than MP or BP stimulation. Bipolar stimulation with radially oriented pairs of VP ball electrodes produced the most restricted activation. The activity patterns evoked by radial VP balls were comparable to those produced by pure tones in normal-hearing animals. Variations in distance between radially oriented VP balls had little effect on activation spread, although increases in interelectrode spacing tended to reduce thresholds. Bipolar stimulation with longitudinally oriented VP electrodes produced broad activation that tended to broaden as the separation between electrodes increased.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41383/1/10162_2004_Article_4026.pd

    From sensory substitute technology to virtual reality research

    No full text
    corecore