118 research outputs found

    Associations between Maternal Iron Supplementation in Pregnancy and Changes in Offspring Size at Birth Reflect Those of Multiple Micronutrient Supplementation.

    Get PDF
    It was previously observed that in a population of a high-income country, dietary multiple micronutrient supplementation in pregnancy was associated with an increased risk of gestational diabetes (GDM) and increased offspring size at birth. In this follow-up study, we investigated whether similar changes are observed with dietary iron supplementation. For this we used the prospective Cambridge Baby Growth Study with records of maternal GDM status, nutrient supplementation, and extensive offspring birth size measurements. Maternal iron supplementation in pregnancy was associated with GDM development (risk ratio 1.67 (1.01-2.77), p = 0.048, n = 677) as well as offspring size and adiposity (n = 844-868) at birth in terms of weight (β' = 0.078 (0.024-0.133); p = 0.005), head circumference (β' = 0.060 (0.012-0.107); p = 0.02), body mass index (β' = 0.067 (0.014-0.119); p = 0.01), and various skinfold thicknesses (β' = 0.067-0.094; p = 0.03-0.003). In a subset of participants for whom GDM statuses were available, all these associations were attenuated by adjusting for GDM. Iron supplementation also attenuated the associations between multiple micronutrient supplementation and these same measures. These results suggest that iron supplementation may mediate the effects associated with multiple micronutrient supplementation in pregnancy in a high-income country, possibly through the increased risk of developing GDM

    The association between age at menarche and later risk of gestational diabetes is mediated by insulin resistance.

    Get PDF
    AIMS: Associations have been reported between age at menarche and the later risk of gestational diabetes. However, it is not known whether these associations reflect differences in insulin sensitivity and/or pancreatic β-cell function in pregnancy. METHODS: We examined this question in women enrolled in the prospective Cambridge Baby Growth Study who recalled their age at menarche in questionnaires during pregnancy. Polynomial logistic and linear regression models were used to relate menarche timing to the risk of gestational diabetes, both unadjusted and adjusted for the Homeostasis Model Assessments of insulin resistance (HOMA IR) and pancreatic β-cell function (HOMA B) at week 28 of pregnancy. RESULTS: Age at menarche showed a U-shaped association with gestational diabetes risk (linear term: p = 9.5 × 10-4; quadratic term: p = 1.0 × 10-3; n = 889; overall model p = 8.1 × 10-3). Age at menarche showed a negative linear association with insulin resistance (HOMA IR: β = -0.13, p = 5.2 × 10-4, n = 771), which explained the relationship between age at menarche and gestational diabetes risk (adjusted linear term going from p = 0.03-0.08; adjusted quadratic term going from p = 0.04-0.08; n = 771). Age at menarche also showed a negative linear association with β-cell function (HOMA B: β = -0.11, p = 2.8 × 10-3, n = 771) but this did not attenuate the relationship between age at menarche and gestational diabetes (adjusted linear term p = 0.02; adjusted quadratic term p = 0.03, n = 771). CONCLUSIONS: These results suggest that the associations between age at menarche and risk of gestational diabetes and raised pregnancy glucose concentrations may be mediated by insulin resistance.Funding for this study has come from the Wellbeing of Women (the Royal College of Obstetricians and Gynaecologists, UK) (RG1644). Other core funding has come from the Medical Research Council (7500001180, G1001995, U106179472), European Union Framework 5 (QLK4-1999-01422), the Mothercare Charitable Foundation (RG54608), Newlife Foundation for Disabled Children (07/20), and the World Cancer Research Fund International (2004/03). In addition, there has been support from National Institute for Health Research Cambridge Biomedical Research Centre. KO is supported by the Medical Research Council (Unit Programme number: MC_UU_12015/2)

    The influence of maternal pregnancy glucose concentrations on associations between a fetal imprinted gene allele score and offspring size at birth

    Get PDF
    Abstract Objective Previously we found that certain fetal imprinted genes represented as an allele score are associated with maternal pregnancy glucose concentrations. Recently it was reported that fetal polymorphisms with strong associations with birth weight tend to mediate these independently of increases in maternal pregnancy glucose concentrations. We therefore investigated whether potential associations between the fetal allele score and birth weight were related to maternal glucose concentrations in the Cambridge Baby Growth Study. Results The fetal imprinted gene allele score was positively associated with birth weight (β = 63 (17–109) g/risk allele, β′ = 0.113, p = 7.6 × 10−3, n = 405). This association was partially attenuated by adjusting for maternal glucose concentrations (β = 50 (4–95) g/risk allele, β′ = 0.089, p = 0.03, n = 405). The allele score was also positively associated with risk of being large for gestational age at birth (odds ratio 1.60 (1.19–2.15) per risk allele, p = 2.1 × 10−3, n = 660) and negatively associated with risk of being small for gestational age at birth (odds ratio 0.65 (0.44–0.96) per risk allele, p = 0.03, n = 660). The large for gestational age at birth association was also partially attenuated by maternal glucose concentrations. These results suggest that associations between the fetal imprinted gene allele score and size at birth are mediated through both glucose-dependent and glucose-independent mechanisms

    Age at Weaning and Infant Growth: Primary Analysis and Systematic Review.

    Get PDF
    OBJECTIVE: To test whether earlier age at weaning (age 3-6 months) may promote faster growth during infancy. STUDY DESIGN: Weaning at age 3.0-7.0 months was reported by 571 mothers of term singletons in a prospective birth cohort study conducted in Cambridge, UK. Infant weight and length were measured at birth and at age 3 months and 12 months. Anthropometric values were transformed into age- and sex-adjusted z-scores. Three linear regression models were performed, including adjustment for confounders in a stepwise manner. Measurements at age 3 months, before weaning, were used to consider reverse causality. RESULTS: Almost three-quarters (72.9%) of infants were weaned before age 6 months. Age at weaning of 3.0-7.0 months was inversely associated with weight and length (but not with body mass index) at 12 months (both P ≤ .01, adjusted for maternal and demographic factors). These associations were attenuated after adjustment for type of milk feeding and weight or length at age 3 months (before weaning). Rapid weight gain between 0 and 3 months predicted subsequent earlier age at weaning (P = .01). Our systematic review identified 2 trials, both reporting null effects of age at weaning on growth, and 15 observational studies, with 10 reporting an inverse association between age at weaning and infant growth and 4 reporting evidence of reverse causality. CONCLUSION: In high-income countries, weaning between 3 and 6 months appears to have a neutral effect on infant growth. Inverse associations are likely related to reverse causality.European Union, World Cancer Research Foundation International, Medical Research Council, Newlife Foundation, NIHR Cambridge Comprehensive Biomedical Research Center, and University of California San Francisco Pathways Explore GrantThis is the final version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0022347615004710

    Anogenital distance from birth to 2 years: a population study.

    Get PDF
    BACKGROUND: Anogenital distance (AGD) is sexually dimorphic in rodents and humans, being 2- to 2.5-fold greater in males. It is a reliable marker of androgen and antiandrogen effects in rodent reproductive toxicologic studies. Data on AGD in humans are sparse, with no longitudinal data collected during infancy. OBJECTIVE: This study was designed to determine AGD from birth to 2 years in males and females and relate this to other anthropometric measures. MATERIALS AND METHODS: Infants were recruited from the Cambridge Baby Growth Study. AGD was measured from the center of the anus to the base of the scrotum in males and to the posterior fourchette in females. Measurements were performed at birth and at 3, 12, 18, and 24 months of age. RESULTS: Data included 2,168 longitudinal AGD measurements from 463 male and 426 female full-term infants (median = 2 measurements per infant). Mean AGD (+/- SD) at birth was 19.8 +/- 6.1 mm in males and 9.1 +/- 2.8 mm in females (p < 0.0001). AGD increased up to 12 months in both sexes and in a sex-dimorphic pattern. AGD was positively correlated with penile length at birth (r = 0.18, p = 0.003) and the increase in AGD from birth to 3 months was correlated with penile growth (r = 0.20, p = 0.001). CONCLUSION: We report novel, longitudinal data for AGD during infancy in a large U.K. birth cohort. AGD was sex dimorphic at all ages studied. The availability of normative data provides a means of utilizing this biological marker of androgen action in population studies of the effects of environmental chemicals on genital development

    Postnatal penile growth concurrent with mini-puberty predicts later sex-typed play behavior: Evidence for neurobehavioral effects of the postnatal androgen surge in typically developing boys.

    Get PDF
    The masculinizing effects of prenatal androgens on human neurobehavioral development are well established. Also, the early postnatal surge of androgens in male infants, or mini-puberty, has been well documented and is known to influence physiological development, including penile growth. However, neurobehavioral effects of androgen exposure during mini-puberty are largely unknown. The main aim of the current study was to evaluate possible neurobehavioral consequences of mini-puberty by relating penile growth in the early postnatal period to subsequent behavior. Using multiple linear regression, we demonstrated that penile growth between birth and three months postnatal, concurrent with mini-puberty, significantly predicted increased masculine/decreased feminine behavior assessed using the Pre-school Activities Inventory (PSAI) in 81 healthy boys at 3 to 4years of age. When we controlled for other potential influences on masculine/feminine behavior and/or penile growth, including variance in androgen exposure prenatally and body growth postnally, the predictive value of penile growth in the early postnatal period persisted. More specifically, prenatal androgen exposure, reflected in the measurement of anogenital distance (AGD), and early postnatal androgen exposure, reflected in penile growth from birth to 3months, were significant predictors of increased masculine/decreased feminine behavior, with each accounting for unique variance. Our findings suggest that independent associations of PSAI with AGD at birth and with penile growth during mini-puberty reflect prenatal and early postnatal androgen exposures respectively. Thus, we provide a novel and readily available approach for assessing effects of early androgen exposures, as well as novel evidence that early postnatal aes human neurobehavioral development.We thank the participating families and the Cambridge Baby Growth Study team. Data were presented at Erasmus Medical Centre, Rotterdam, where suggestions were integrated into analyses. The study was supported by the European Union Fifth Framework Programme) (Grant #QLK4-CT-1999-01422, World Cancer Research Fund International, Mothercare Foundation, Newlife Foundation for Disabled Children and Medical Research Council (UK). We also thank the Wellcome Trust Clinical Research Facility and the National Institute for Health Research — Biomedical Research Centre Cambridge.This is the final published version. It first appeared at http://www.sciencedirect.com/science/article/pii/S0018506X15000033#

    Prenatal androgen exposure alters girls' responses to information indicating gender-appropriate behaviour.

    Get PDF
    Individual variability in human gender-related behaviour is influenced by many factors, including androgen exposure prenatally, as well as self-socialization and socialization by others postnatally. Many studies have looked at these types of influences in isolation, but little is known about how they work together. Here, we report that girls exposed to high concentrations of androgens prenatally, because they have the genetic condition congenital adrenal hyperplasia, show changes in processes related to self-socialization of gender-related behaviour. Specifically, they are less responsive than other girls to information that particular objects are for girls and they show reduced imitation of female models choosing particular objects. These findings suggest that prenatal androgen exposure may influence subsequent gender-related behaviours, including object (toy) choices, in part by changing processes involved in the self-socialization of gendered behaviour, rather than only by inducing permanent changes in the brain during early development. In addition, the findings suggest that some of the behavioural effects of prenatal androgen exposure might be subject to alteration by postnatal socialization processes. The findings also suggest a previously unknown influence of early androgen exposure on later processes involved in self-socialization of gender-related behaviour, and thus expand understanding of the developmental systems regulating human gender development.This is the author accepted manuscript. The final version is available from Royal Society Publishing via http://dx.doi.org/10.1098/rstb.2015.012

    Prenatal paracetamol exposure is associated with shorter anogenital distance in male infants

    Get PDF
    Study question:{\bf Study~question:} What is the relationship between maternal paracetamol intake during the masculinisation programming window (MPW, 8-14 weeks of gestation) and male infant anogenital distance (AGD), a biomarker for androgen action during the MPW? Summary answer:{\bf Summary~answer:} Intrauterine paracetamol exposure during 8-14 weeks of gestation is associated with shorter AGD from birth to 24 months of age. What is known already:{\bf What~is~known~already:} The increasing prevalence of male reproductive disorders may reflect environmental influences on fetal testicular development during the MPW. Animal and human xenograft studies have demonstrated that paracetamol reduces fetal testicular testosterone production, consistent with reported epidemiological associations between prenatal paracetamol exposure and cryptorchidism. Study design, size, duration:{\bf Study~design,~size,~duration:} Prospective cohort study (Cambridge Baby Growth Study), with recruitment of pregnant women at ~12 post-menstrual weeks of gestation from a single UK maternity unit between 2001 and 2009, and 24 months of infant follow-up. Of 2229 recruited women, 1640 continued with the infancy study after delivery, of whom 676 delivered male infants and completed a medicine consumption questionnaire. Participants/materials, setting, methods:{\bf Participants/materials,~setting,~methods:} Mothers self-reported medicine consumption during pregnancy by a questionnaire administered during the perinatal period. Infant AGD (measured from 2006 onwards), penile length, and testicular descent were assessed at 0, 3, 12, 18, and 24 months of age, and age-specific Z scores were calculated. Associations between paracetamol intake during three gestational periods (14 weeks) and these outcomes were tested by linear mixed models. Two hundred and twenty-five (33%) of 681 male infants were exposed to paracetamol during pregnancy, of whom 68 were reported to be exposed during 8-14 weeks. AGD measurements were available for 434 male infants. Main results and the role of chance:{\bf Main~results~and~the~role~of~chance:} Paracetamol exposure during 8-14 weeks of gestation, but not any other period, was associated with shorter AGD (by 0.27 SD, 95% CI 0.06-0.48, p=0.014) from birth to 24 months of age. This reduction was independent of body size. Paracetamol exposure was not related to penile length or testicular descent. Limitations, reasons for caution:{\bf Limitations,~reasons~for~caution:} Confounding by other drugs or endocrine-disrupting chemicals cannot be discounted. The cohort was not fully representative of pregnant women in the UK, particularly in terms of maternal ethnicity and smoking prevalence. There is likely to have been misclassification of paracetamol exposure due to recall error. Wider implications of the findings:{\bf Wider~implications~of~the~findings:} Our observational findings support experimental evidence that intrauterine paracetamol exposure during the MPW may adversely affect male reproductive development.European Union (Framework V programme), World Cancer Research Fund International, Medical Research Council (UK), Newlife Foundation for Disabled Children, Evelyn Trust, Mothercare Group Foundation, Mead Johnson Nutrition, National Institute for Health Research Cambridge Comprehensive Biomedical Research CentreThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Oxford University Press

    Pregnancy insulin, glucose, and BMI contribute to birth outcomes in nondiabetic mothers.

    Get PDF
    OBJECTIVE: We investigated the effects of normal variations in maternal glycemia on birth size and other birth outcomes. RESEARCH DESIGN AND METHODS: Women in two unselected birth cohorts, one retrospective (n = 3,158) and one prospective (n = 668), underwent an oral glucose challenge at 28 weeks of gestation. In the retrospective study, glycemia was linked to routine birth records. In the prospective study, offspring adiposity was assessed by skinfold thickness from birth to age 24 months. RESULTS: In the retrospective study, within the nondiabetic range (2.1-7.8 mmol/l), each 1 mmol/l rise in the mother's 60-min glucose level was associated with a (mean +/- SEM) 2.1 +/- 0.8% (P = 0.006) rise in absolute risk of assisted vaginal delivery, a 3.4 +/- 0.8% (P 90th centile) was independently related to the mother's fasting glucose (odds ratio 2.61 per +1 mmol/l [95% CI 1.15-5.93]) and prepregnancy BMI (1.10 per +1 kg/m(2) [1.04-1.18]). The mother's higher fasting glycemia (P = 0.004), lower insulin sensitivity (P = 0.01), and lower insulin secretion (P = 0.02) were independently related to greater offspring adiposity at birth. During postnatal follow-up, the correlation between the mother's glycemia and offspring adiposity disappeared by 3 months, whereas prepregnancy BMI was associated with offspring adiposity that was only apparent at 12 and 24 months (both P < 0.05). CONCLUSIONS: Prepregnancy BMI, pregnancy glycemia, insulin sensitivity, and insulin secretion all contribute to offspring adiposity and macrosomia and may be separate targets for intervention to optimize birth outcomes and later offspring health
    corecore