5 research outputs found
Controlled methyl chloride synthesis at mild conditions using ultrasound irradiation
A new route for the chlorination of methane is described using ultrasound irradiation, which allows for an intrinsically safe process at ambient pressure and temperature. By tuning the gas feed composition methyl chloride yields of up to 19% have been obtaine
Sound-driven fluid dynamics in pressurized carbon dioxide
Using high-speed visualization we demonstrate that ultrasound irradiation of pressurized carbon dioxide (CO2) induces phenomena that do not occur in ordinary liquids at ambient conditions. For a near-critical mixture of CO2 and argon, sonication leads to extremely fast local phase separation, in which the system enters and leaves the two-phase region with the frequency of the imposed sound field. This phase transition can propagate with the speed of sound, but can also be located at fixed positions in the case of a standing sound wave. Sonication of a vapor-liquid interface creates a fine dispersion of liquid and vapor, irrespective whether the ultrasound horn is placed in the liquid or the vapor phase. In the absence of an interface, sonication of the liquid leads to ejection of a macroscopic vapor phase from the ultrasound horn with a velocity of several meters per second in the direction of wave propagation. The findings reported here potentially provide a tunable and noninvasive means for enhancing mass and heat transfer in high-pressure fluids
Inhibition of nonlinear acoustic cavitation dynamics in liquid CO2
The authors present a model to study ultrasound-induced cavitation dynamics in liquid carbon dioxide (CO2), which includes descriptions for momentum, mass, and energy transport. To assist in the interpretation of these results, numerical simulations are presented for an argon cavity in water. For aqueous systems, inertia effects and force accumulation lead to a nonlinear radial motion, resulting in an almost adiabatic compression of the cavity interior. The simulations for liquid CO2 suggest that transport limitations impede nonlinear cavitation dynamics and the corresponding temperature rise. Consequently, in liquid CO2 the ultrasound-induced formation of radicals appears improbable. ©2007 American Institute of Physic