91 research outputs found

    Polymorphisms of the renin-angiotensin system genes in progressive renal diseases

    Get PDF

    The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy

    Get PDF
    The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy.BackgroundInhibition of angiotensin action, pharmacologically or genetically, during the neonatal period leads to renal anomalies involving hypoplastic papilla and dilated calyx. Recently, we documented that angiotensinogen (Agt -/-) or angiotensin type 1 receptor nullizygotes (Agtr1 -/-) do not develop renal pelvis nor ureteral peristaltic movement, both of which are essential for isolating the kidney from the high downstream ureteral pressure. We therefore examined whether these renal anomalies could be characterized as “obstructive” nephropathy.MethodsAgtr1 -/- neonatal mice were compared with wild-type neonates, the latter subjected to surgical complete unilateral ureteral ligation (UUO), by analyzing morphometrical, immunohistochemical, and molecular indices. Agtr1 -/- mice were also subjected to a complete UUO and were compared with wild-type UUO mice by quantitative analysis. To assess the function of the urinary tract, baseline pelvic and ureteral pressures were measured.ResultsThe structural anomalies were qualitatively indistinguishable between the Agtr1 -/- without surgical obstruction versus the wild type with complete UUO. Thus, in both kidneys, the calyx was enlarged, whereas the papilla was atrophic; tubulointerstitial cells underwent proliferation and also apoptosis. Both were also characterized by interstitial macrophage infiltration and fibrosis, and within the local lesion, transforming growth factor-β1, platelet-derived growth factor-A, and insulin-like growth factor-1 were up-regulated, whereas epidermal growth factor was down-regulated. Moreover, quantitative differences that exist between mutant kidneys without surgical obstruction and wild-type kidneys with surgical UUO were abolished when both underwent the same complete surgical UUO. The hydraulic baseline pressure was always lower in the pelvis than that in the ureter in the wild type, whereas this pressure gradient was reversed in the mutant.ConclusionThe abnormal kidney structure that develops in neonates during angiotensin inhibition is attributed largely to “functional obstruction” of the urinary tract caused by the defective development of peristaltic machinery

    Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption

    Get PDF
    Angiotensinogen gene null-mutant mice lack homeostatic regulation of glomerular filtration and tubular reabsorption. Chronic volume depletion by dietary salt restriction causes marked decrease in glomerular filtration rate (GFR) with little increase in urine osmolality in angiotensinogen gene null mutant (Agt−/−) mice. Moreover, urine osmolality is insensitive to both water and vasopressin challenge. In contrast, in normal wild-type (Agt+/+) mice, GFR remains remarkably constant and urine osmolality is adjusted promptly. Changes in volume status also cause striking divergence in renal structure between Agt−/− and Agt+/+ mice. Thus, in contrast to the remarkably stable glomerular size of Agt+/+ mice, glomeruli of Agt−/− mice are atrophied during a low salt and hypertrophied during a high salt diet. Moreover, the renal papilla, a structure unique to mammals and essential for urine diluting and concentrating mechanisms, is hypoplastic in Agt−/− mice. Thus, angiotensin is essential for the two fundamental homeostatic functions of the mammalian kidney, namely stable GFR and high urine diluting and concentrating capacity during alteration in extracellular fluid (ECF) volume. This is not only accompanied by angiotensin’s tonic effects on renal vasomotor tone and tubule transporters, but also accomplished through its capacity to affect the structure of both the glomerulus and the papilla directly or indirectly

    Strategic locus for the activation of the superoxide dismutase gene in the nephron

    Get PDF
    Strategic locus for the activation of the superoxide dismutase gene in the nephron. Upon exposure to a transient ischemia, the distal tubule of the kidney often escapes the severe damage which afflicts the proximal tubule. To ascertain whether this feature of the distal tubule is attributable to its intrinsic cellular properties, we focused on two pairs of unique tubule segments; distal versus proximal convoluted tubules in the superficial cortex and distal versus proximal straight tubules in the outer stripe of the outer medulla. These tubules were chosen because, firstly, they can be identified by morphology and immunostaining, and secondly, each pair has the same anatomical relationship to the circulation. Detailed morphometric analyses were performed six hours following unilateral transient ischemia in adult rats to semiquantitate the local tissue damage in these specific nephron segments. The architecture of the distal convoluted and straight tubules was remarkably well preserved, contrasting to the moderate to extensive necrotic changes seen in the proximal tubules. In search of the potential intrinsic cellular mechanism that underlies the observed difference, we examined the segmental distribution along the nephron of manganese superoxide dismutase gene transcripts by in situ hybridization. This antioxidant enzyme gene was expressed primarily in the distal tubules with contrastingly low levels of expression in the proximal tubules. Moreover, following ischemia-reperfusion, this distal tubule-dominant pattern was further accentuated immediately following reperfusion. The study indicates that the marked difference between the proximal and distal tubules in their susceptibility to injury in vivo is attributable to their intrinsic cellular properties, which include the local level of antioxidants

    Mineralocorticoid Receptor Blocker Protects against Podocyte-Dependent Glomerulosclerosis

    Get PDF
    Background: We previously showed that angiotensin type 1 receptor (AT1) blocker (ARB) attenuates glomerular injury in Nphs1-hCD25 (NEP25) transgenic mice, a model of selective podocyte injury. However, subsequent studies in NEP25 mice with podocyte-specific deficiency of AT1 revealed that the protective effects of ARB are not through the podocyte AT1, thereby raising the possibility that the protective effects of ARB involve mineralocorticoids. Methods: NEP25 mice were treated with the mineralocorticoid receptor blocker (MRB) spironolactone (25 mg/kg/day, n = 10), the ARB losartan (250 mg/kg/day, n = 11), both (ARB+MRB, n = 8) or vehicle (Vehicle, n = 9) from day –7 to day 9 of induction of podocyte injury. Results: Although MRB did not reduce systolic blood pressure or proteinuria, addition of MRB to ARB significantly attenuated glomerulosclerosis (glomerulosclerosis index: ARB+MRB 1.67 ± 0.19 vs. MRB 2.01 ± 0.29, ARB 2.35 ± 0.19, and Vehicle 2.25 ± 0.26, p Conclusion: These data suggest that, while MRB does not attenuate proteinuria caused by podocyte-specific injury, it provides protective effects against glomerulosclerosis that is independent of systemic blood pressure

    Effect of diet, age and sex on the renal response to immune injury in the rat

    Get PDF
    Effect of diet, age and sex on the glomerular response to immune injury in the rat. We investigated the effect of three factors, namely dietary protein intake, age and sex, on the susceptibility of the renal glomerulus to the binding of antiglomerular basement membrane antibody (anti-GBM) in the early (heterologous) phase of anti-GBM nephritis, and the consequent reduction in glomerular filtration rate (GFR) as measured by inulin clearance (CIn). The effect of diet was examined in ≈ 8 week-old female Munich-Wistar rats fed a 40% high (HP) or a 6% low (LP) protein diet, and that of sex and age in male and female rats, 6 week or 10 month old. Following an intravenous dose (3 to 20 µg/g body wt) of radiolabeled nephritogenic anti-GBM, assessment of glomerular function was followed by quantitation of anti-GBM binding (values corrected for GBM surface area) in isolated glomeruli. At a given plasma level of antibody, the degree of binding of anti-GBM was slightly but significantly higher in HP than LP-fed rats; the decrease in GFR was significantly more pronounced in HP than LP-fed animals. The amount of anti-GBM binding was significantly greater in adult than young animals; however, the consequent decrease in GFR was more pronounced in the young than adult animals. Sex dependency was not discernible in anti-GBM binding or reduction in GFR. In all of the above experimental groups, the degree of anti-GBM binding was closely correlated with the plasma level of anti-GBM, but not with effective renal plasma flow rate, measured by PAH clearance. Separate groups of rats were subjected to experimental manipulation of single nephron GFR, glomerular capillary hydraulic pressure and glomerular plasma flow rate, by partial aortic constriction and saralasin administration. This set of experiments, using a tracer amount of non-nephritogenic anti-GBM, revealed that glomerular anti-GBM binding is independent of any of the above parameters. The studies indicate that dietary protein intake and age, but not sex, are among the factors determining the susceptibility of the glomerulus to acute immune injury. Since the binding of anti-GBM is determined by the affinity property of the glomerulus per se, and not by the prevailing hemodynamic pattern, the observed dependence of susceptibility to functional impairment on age and protein intake appears to also reflect a property of the glomerulus, which is influenced by age and the degree of dietary protein intake

    Role of intrinsic antioxidant enzymes in renal oxidant injury

    Get PDF
    Role of intrinsic antioxidant enzymes in renal oxidant injury. To investigate the functional role of renal intrinsic antioxidant enzymes (AOEs), the levels of AOE activities in isolated glomeruli and the changes in renal function to oxidant insults were assessed in normal control rats (NC, N = 23) and rats subjected to 30-minutes of complete renal ischemia for three days (day-3, N = 20) or six days (day-6, N = 23) prior to study. When compared to NC, the activities of total and manganese (cyanide-insensitive) superoxide dismutase, glutathione peroxidase, and catalase were increased more than twofold in day-6 animals, on average, from 36 ± 4 U/mg protein, 9 ± 1 U/mg protein, 129 ± 21 U/mg protein and 1.32 ± 0.20 k/mg protein, respectively, to 80 ± 5, 27 ± 3, 283 ± 41 and 3.20 ± 0.20, respectively (P < 0.05 for all). There were no changes in AOE activities in day-3 animals. In day-6 animals, however, the activities of non-AOEs, LDH and fumarase were found to be unaffected. Separate groups of NC (N = 12), day-3 (N = 5) and day-6 (N = 12) rats were subjected to either 30 minutes of ischemia plus 60 minutes of reperfusion (I/R) or unilateral i.a. infusion of hydrogen peroxide (H2O2, 35 µmoles in 1 hr). The degree of reduction in inulin and para-amino hippurate clearance rates following I/R were significantly less in day-6 (-21 ± 3% and -12 ± 2, respectively) compared to NC (-69 ± 9% and -59 ± 11, respectively) or day-3 rats (-73 ± 1% and -62 ± 10, respectively). Likewise, whereas urine protein excretion rate increased markedly following H2O2 administration in NC (from 4 ± 1 µg/min to 309 ± 29), proteinuria did not develop in day-6 (from 5 ± 1 µg/min to 5 ± 3). These findings suggest that renal intrinsic AOE activities can be augmented by the insult of I/R, and the enhanced AOE activities provide kidneys with an effective defense system against ROS-mediated injuries. Thus, the prevailing AOE activity levels within the kidney appear to be an important determinant for renal dysfunction induced by ROS

    Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy

    Get PDF
    Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy.BackgroundHuman immunodeficiency virus (HIV)-1-associated nephropathy (HIVAN) is characterized by collapsing focal and segmental glomerulosclerosis (FSGS) and microcystic tubular dilatation. HIV-1 infection is also associated with other forms of nephropathy, including mesangial hyperplasia. Since HIV-1 gene products are detected in podocytes and other renal cells, it remains uncertain whether podocyte-restricted HIV-1 gene expression can account for the full spectrum of renal lesions involving nonpodocytes.MethodsTo define the role of podocyte-restricted HIV-1 gene expression in the progression of HIVAN, we generated transgenic mice that express nonstructural HIV-1 genes selectively in podocytes.ResultsFour of the seven founder mice developed proteinuria and nephropathy. In a subsequently established transgenic line, reverse transcription-polymerase chain reaction (RT-PCR) analysis detected mRNAs for vif, vpr, nef, and spliced forms of tat and rev, but not vpu, in the kidney. In situ hybridization localized HIV-1 RNA to the podocyte. Transgenic mice on FVB/N genetic background exhibited cuboidal morphology of podocytes with reduced extension of primary and foot processes at 2 weeks of age. After 3 weeks of age, these mice developed massive and nonselective proteinuria with damage of podocytes and other glomerular cells and, after 4 weeks of age, collapsing FSGS and microcystic tubular dilatation. In marked contrast, transgenic mice with C57BL/6 genetic background showed either normal renal histology or only mild mesangial expansion without overt podocyte damage.ConclusionThe present study demonstrates that podocyte-restricted expression of HIV-1 gene products is sufficient for the development of collapsing glomerulosclerosis in the setting of susceptible genetic background

    Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells

    Get PDF
    Oxidants induce transcriptional activation of manganese superoxide dismutase in glomerular cells. Cultured rat glomerular mesangial and epithelial cells and bovine glomerular endothelial cells were exposed to various concentrations of hydrogen peroxide (H2O2). Mesangial cells treated with 10 to 100 µM H2O2 for 24 hours showed a two- to ninefold increase in Mn-SOD mRNA expression associated with significantly (P < 0.005) increased Mn-SOD activity (22.2 ± 1.2 and 12.2 ± 0.7 µ/mg protein for H2O2 100 µM treated and untreated cells, respectively). In contrast, expression of Cu-Zn SOD and β-actin mRNA was not affected by H2O2. Induction of Mn-SOD mRNA by H2O2 was inhibited by actinomycin-D (4 µM) treatment. Glomerular endothelial cells also showed an increase in Mn-SOD mRNA expression following 100 µM H2O2 treatment, as did glomerular epithelial cells following treatment with 500 and 1000 µM H2O2 but not with 100 µM. Transcriptional activity of the Mn-SOD gene was assessed with a fusion reporter gene consisting of a luciferase gene (pGL2P) and a 1.2 kb fragment from the rat Mn-SOD genomic DNA (-806 to +408 bp of the transcription initiation site, -806:+408). The construct was transfected into rat glomerular mesangial and epithelial cells. Mesangial and epithelial cells transfected with pGL2P (-806:+408) and treated with H2O2 (100 µM and 1 mM for mesangial and epithelial cells, respectively) demonstrated some threefold increase in luciferase activity, whereas cells transfected with pGL2P lacking the Mn-SOD fragment did not show changes in luciferase activity following H2O2 treatment. Other oxidants, namely α- and β-naphthoflavone (50 µM to mesangial cells) and puromycin aminonucleoside (25 to 50 µg/ml to epithelial cells), also induced transcriptional activation (2- to 5-fold increase) in these cells. Thus, Mn-SOD levels in glomerular cells are enhanced when they are exposed to oxidant stress, and this up-regulation involves transcriptional activation. Further, the Mn-SOD gene contains enhancer element(s) which respond to diverse oxidant stress. The inducibility by oxidants of local Mn-SOD demonstrates that glomerular SOD may play a decisive role in the pathogenesis of glomerular injuries in which the balance between oxidants and antioxidants is critical
    corecore