1,395 research outputs found

    Preparedness and Response to Pediatric COVID-19 in European Emergency Departments : A Survey of the REPEM and PERUKI Networks

    Get PDF
    Publisher Copyright: © 2020 American College of Emergency Physicians Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Study objective: We aim to describe the variability and identify gaps in preparedness and response to the coronavirus disease 2019 pandemic in European emergency departments (EDs) caring for children. Methods: A cross-sectional point-prevalence survey was developed and disseminated through the pediatric emergency medicine research networks for Europe (Research in European Pediatric Emergency Medicine) and the United Kingdom and Ireland (Paediatric Emergency Research in the United Kingdom and Ireland). We aimed to include 10 EDs for countries with greater than 20 million inhabitants and 5 EDs for less populated countries, unless the number of eligible EDs was less than 5. ED directors or their delegates completed the survey between March 20 and 21 to report practice at that time. We used descriptive statistics to analyze data. Results: Overall, 102 centers from 18 countries (86% response rate) completed the survey: 34% did not have an ED contingency plan for pandemics and 36% had never had simulations for such events. Wide variation on personal protective equipment (PPE) items was shown for recommended PPE use at pretriage and for patient assessment, with 62% of centers experiencing shortage in one or more PPE items, most frequently FFP2 and N95 masks. Only 17% of EDs had negative-pressure isolation rooms. Coronavirus disease 2019–positive ED staff was reported in 25% of centers. Conclusion: We found variation and identified gaps in preparedness and response to the coronavirus disease 2019 epidemic across European referral EDs for children. A lack in early availability of a documented contingency plan, provision of simulation training, appropriate use of PPE, and appropriate isolation facilities emerged as gaps that should be optimized to improve preparedness and inform responses to future pandemics.publishersversionPeer reviewe

    Position resolution and particle identification with the ATLAS EM calorimeter

    Full text link
    In the years between 2000 and 2002 several pre-series and series modules of the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon and pion beams. The performance of the calorimeter with respect to its finely segmented first sampling has been studied. The polar angle resolution has been found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection has been measured to be about 3.5 for 90% photon selection efficiency at pT=50 GeV/c. Electron-pion separation studies have indicated that a pion fake rate of (0.07-0.5)% can be achieved while maintaining 90% electron identification efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
    corecore