1,740 research outputs found

    Cooperative Binning for Semi-deterministic Channels with Non-causal State Information

    Full text link
    The capacity of the semi-deterministic relay channel (SD-RC) with non-causal channel state information (CSI) only at the encoder and decoder is characterized. The capacity is achieved by a scheme based on cooperative-bin-forward. This scheme allows cooperation between the transmitter and the relay without the need to decode a part of the message by the relay. The transmission is divided into blocks and each deterministic output of the channel (observed by the relay) is mapped to a bin. The bin index is used by the encoder and the relay to choose the cooperation codeword in the next transmission block. In causal settings the cooperation is independent of the state. In \emph{non-causal} settings dependency between the relay's transmission and the state can increase the transmission rates. The encoder implicitly conveys partial state information to the relay. In particular, it uses the states of the next block and selects a cooperation codeword accordingly and the relay transmission depends on the cooperation codeword and therefore also on the states. We also consider the multiple access channel with partial cribbing as a semi-deterministic channel. The capacity region of this channel with non-causal CSI is achieved by the new scheme. Examining the result in several cases, we introduce a new problem of a point-to-point (PTP) channel where the state is provided to the transmitter by a state encoder. Interestingly, even though the CSI is also available at the receiver, we provide an example which shows that the capacity with non-causal CSI at the state encoder is strictly larger than the capacity with causal CSI

    Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime

    Get PDF
    We have demonstrated a recoil-free spectroscopy on the 1S03P1{}^1S_0-{}^3P_1 transition of strontium atoms confined in a one-dimensional optical lattice. By investigating the wavelength and polarization dependence of the ac Stark shift acting on the 1S0{}^1S_0 and 3P1(mJ=0){}^3P_1(m_J=0) states, we determined the {\it magic wavelength} where the Stark shifts for both states coincide. The Lamb-Dicke confinement provided by this Stark-free optical lattice enabled the measurement of the atomic spectrum free from Doppler as well as recoil shifts.Comment: 5pages, 4figure

    Sublattice synchronization of chaotic networks with delayed couplings

    Full text link
    Synchronization of chaotic units coupled by their time delayed variables are investigated analytically. A new type of cooperative behavior is found: sublattice synchronization. Although the units of one sublattice are not directly coupled to each other, they completely synchronize without time delay. The chaotic trajectories of different sublattices are only weakly correlated but not related by generalized synchronization. Nevertheless, the trajectory of one sublattice is predictable from the complete trajectory of the other one. The spectra of Lyapunov exponents are calculated analytically in the limit of infinite delay times, and phase diagrams are derived for different topologies

    Development of a New in vivo Double Autoradiogram for the Analysis of Dopaminergic System of the Rat Brain

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Public Channel Cryptography: Chaos Synchronization and Hilbert's Tenth Problem

    Full text link
    The synchronization process of two mutually delayed coupled deterministic chaotic maps is demonstrated both analytically and numerically. The synchronization is preserved when the mutually transmitted signal is concealed by two commutative private filters that are placed on each end of the communication channel. We demonstrate that when the transmitted signal is a convolution of the truncated time delayed output signals or some powers of the delayed output signals synchronization is still maintained. The task of a passive attacker is mapped onto Hilbert's tenth problem, solving a set of nonlinear Diophantine equations, which was proven to be in the class of NP-Complete problems. This bridge between two different disciplines, synchronization in nonlinear dynamical processes and the realm of the NPC problems, opens a horizon for a new type of secure public-channel protocols

    Narrow Line Cooling and Momentum-Space Crystals

    Full text link
    Narrow line laser cooling is advancing the frontier for experiments ranging from studies of fundamental atomic physics to high precision optical frequency standards. In this paper, we present an extensive description of the systems and techniques necessary to realize 689 nm 1S0 - 3P1 narrow line cooling of atomic 88Sr. Narrow line cooling and trapping dynamics are also studied in detail. By controlling the relative size of the power broadened transition linewidth and the single-photon recoil frequency shift, we show that it is possible to continuously bridge the gap between semiclassical and quantum mechanical cooling. Novel semiclassical cooling process, some of which are intimately linked to gravity, are also explored. Moreover, for laser frequencies tuned above the atomic resonance, we demonstrate momentum-space crystals containing up to 26 well defined lattice points. Gravitationally assisted cooling is also achieved with blue-detuned light. Theoretically, we find the blue detuned dynamics are universal to Doppler limited systems. This paper offers the most comprehensive study of narrow line laser cooling to date.Comment: 14 pages, 19 figure

    Narrow Line Cooling: Finite Photon Recoil Dynamics

    Full text link
    We present an extensive study of the unique thermal and mechanical dynamics for narrow-line cooling on the 1S0 - 3P1 88Sr transition. For negative detuning, trap dynamics reveal a transition from the semiclassical regime to the photon-recoil-dominated quantum regime, yielding an absolute minima in the equilibrium temperature below the single-photon recoil limit. For positive detuning, the cloud divides into discrete momentum packets whose alignment mimics lattice points on a face-centered-cubic crystal. This novel behavior arises from velocity selection and "positive feedback" acceleration due to a finite number of photon recoils. Cooling is achieved with blue-detuned light around a velocity where gravity balances the radiative force.Comment: 4 pages, 3 figures, Phys. Rev. Lett., in pres
    corecore