4 research outputs found

    Crystal growth, structural and spectroscopic characterization, antimicrobial activity, DNA cleavage, molecular docking and density functional theory calculations of Zn(II) complex with 2-pyridinecarboxylic acid

    No full text
    A Zn(II) complex with 2-pyridinecarboxylic acid was prepared, and its crystal structure characterization was carried out using X-ray diffraction analysis. The spectroscopic properties of the Zn(II) complex were determined by means of Fourier transform infrared, Raman and UV-visible spectroscopic techniques. The coordination sphere for the central Zn(II) ion was found to be a distorted octahedron. The CO, CC and CN stretching vibrations were found highly active and strong, leading to intramolecular charge transfer within the Zn(II) complex. Density functional theory calculations were carried out to provide further understanding of structural, spectroscopic and nonlinear optical properties of the complex. The occurrence of hydrogen bonding interactions in the Zn(II) complex was explained by natural bond orbital analysis. According to obtained hyperconjugative interaction energies, metal-ligand charge transfer interactions occur in the Zn(II) complex. The antimicrobial activities were determined against standard Gram-positive and Gram-negative bacterial strains and yeasts using the minimum inhibitory concentration method. Having a significant effect against Candida albicans and Saccharomyces cerevisiae is important in that the complex can be used as a new antifungal agent. The calculated free binding energy of the interaction of the Zn(II) complex with DNA was found to be 6.72kcalmol(-1), indicating a high binding affinity between the complex and DNA

    Synthesis, structural characterization, Hirshfeld surface analysis, antimicrobial activity, and DNA cleavage studies of (Z)-4-methyl-N '-(phenyl(pyridin-2-yl)methylene)benzenesulfonohydrazide and its Co(II), Ni(II) and Zn(II) complexes

    No full text
    WOS: 000487930600077The NNO tridentate Schiff base ligand of 2-benzoyl pyridine sulfonyl hydrazone (HL) and its transition metal complexes [CoL2] (1), [NiL2] (2) and [ZnL2] (3) have been synthesized and characterized by analytical and spectroscopic studies. The molecular structures of HL and [NiL2] (2) have been investigated by X-ray diffraction and DET/B3LYP methods. Based on the optimized structures, a single point energy calculation was made for HL and (2) in the different solvent media. The stability of the molecular structures was investigated in different solvent environments by calculating the molecular orbital energies and total energies of the molecular structures. The global reactivity parameters were obtained and the interactions between the molecules with DNA bases such as adenine, cytosine, guanine, and thymine were investigated by using the ECT (electrophilicity-based charge transfer) method and Delta N (charge transfer). Hirshfeld surfaces of HL and (2) complex were investigated and the interaction energies between the molecules participating in C-H center dot center dot center dot O/pi interactions in the molecular structures were calculated by using the CE-HF energy model. From elemental analysis data, the metal-ligand ratio of the complexes was found to be 1:2. All compounds were examined for their antimicrobial activity against pathogenic microorganisms by the well-diffusion method. DNA cleavage studies of compounds were screened by the agarose gel electrophoresis method. The results showed that complex (3) showed highly nicking activity, while HL, (1) and (2) complexes didn't show any nicking activity. (C) 2019 Elsevier B.V. All rights reserved.Ahi Evran University Scientific Research Projects Coordination Unit.Ahi Evran University [TIP. A4.18.005]This work was supported by the Ahi Evran University Scientific Research Projects Coordination Unit. (Project Number: TIP. A4.18.005). The authors acknowledge to Central Research and Application Laboratory, Kirsehir Ahi Evran University. The authors acknowledge to Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer

    Antimicrobial activities, DNA interactions, spectroscopic (FT-IR and UV-Vis) characterizations, and DFT calculations for pyridine-2-carboxylic acid and its derivates

    No full text
    In this paper, pyridine-2-carboxylic acid, also known as picolinic acid (pic), and its two derivate, 4-methoxy-pyridine-2-carboxylic acid (4-Mpic) and 4-chloro-pyridine-2-carboxylic acid (4-Clpic) have been characterized by FT-IR and UV-Vis spectroscopy techniques as well as DFT calculations. B3LYP level of Density Functional Theory (DFT) method was used to obtain ground state geometries, vibration wavenumbers, first order hyperpolarizabilities and molecular electrostatic potential (MEP) surfaces for pic, 4Clpic and 4Mpic. The electronic absorption wavelengths and HOMO-LUMO energies were investigated by time dependent B3LYP (TD-B3LYP) level with the conductor-like polarizable continuum model (CPCM). The effects of Cl atom and OCH3 group on HOMO-LUMO energy gaps and first order hyper-polarizability parameters of pic, 4Clpic and 4Mpic molecules were examined. All molecules were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains by using minimal inhibitory concentration method (MIC). All compounds (pic, 4Mpic and 4Clpic) have been found to be very active against to the Gram (+) and Gram (-) bacteria. The DNA interactions of pic, 4CIpic and 4Mpic were analyzed by molecular docking simulations, and the interaction of the 4Mpic molecule with DNA is found to be higher than 4Clpic and pic. (c) 2017 Elsevier B.V. All rights reserved
    corecore