172 research outputs found

    Self-Energy Effects on the Low- to High-Energy Electronic Structure of SrVO3

    Full text link
    The correlated electronic structure of SrVO3 has been investigated by angle-resolved photoemission spectroscopy using in-situ prepared thin films. Pronounced features of band renormalization have been observed: a sharp kink ~60 meV below the Fermi level (EF) and a broad so-called "high-energy kink" ~0.3 eV below EF as in the high-Tc cuprates although SrVO3 does not show magnetic fluctuations. We have deduced the self-energy in a wide energy range by applying the Kramers-Kronig relation to the observed spectra. The obtained self-energy clearly shows a large energy scale of ~0.7 eV which is attributed to electron-electron interaction and gives rise to the ~0.3 eV "kink" in the band dispersion as well as the incoherent peak ~1.5eV below EF. The present analysis enables us to obtain consistent picture both for the incoherent spectra and the band renormalization.Comment: 5 pages, 3 figure

    An energy scale directly related to superconductivity in the high-TcT_c cuprate superconductors: Universality from the Fermi arc picture

    Full text link
    We have performed a temperature dependent angle-resolved photoemission spectroscopy (ARPES) study of the tri-layer high-TcT_c cuprate superconductor (HTSC) Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta} (Bi2223), and have shown that the \textquotedblleft effective\textquotedblright superconducting (SC) gap Δsc\Delta_{\rm{sc}} defined at the end point of the Fermi arc and the TcT_c (= 110 K) approximately satisfies the weak-coupling BCS-relationship 2Δsc\Delta_{\rm{sc}} = 4.3kBTck_{\rm{B}}T_c. Combining this result with previous ARPES results on single- and double-layer cuprates, we show that the relationship between 2Δsc\Delta_{\rm{sc}} = 4.3kBTck_{\rm{B}}T_c holds for various HTSCs. Furthermore, at TT ∼\sim TcT_c, the quasi-patricle width at the end point of the Fermi arc is found to coincide with Δsc\Delta_{\rm{sc}}, consistent with the context of Planckian dissipation.Comment: 5 pages, 4 figure

    Effect of electron-phonon coupling in the ARPES spectra of the tri-layer cuprate Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta}

    Full text link
    Angle-resolved photoemission spectroscopy using tunable low energy photons allows us to study the quasi-particle (QP) dispersions of the inner and outer CuO2 planes (IP and OP) separately in the tri-layer cuprate Bi2_2Sr2_2Ca2_2Cu3_3O10+δ_{10+\delta} (Bi2223). The kink energy of the OP band is ∼\sim 70 meV, as observed in various high-TcT_c cuprates, while that of the IP band is as large as 100 meV in the superconducting (SC) state. This large kink energy is attributed to the ∼\sim 35 meV buckling mode plus the large (∼\sim 60 meV) SC gap of IP. The IP band also shows a weak kink feature at 70 meV in the SC state. The latter feature can be explained either by the 70 meV half-breathing mode or by the ∼\sim 35 meV buckling-phonon mode plus the ∼\sim 40 meV SC gap of OP if interlayer scattering of QP is involved.Comment: 5 pages, 2 figure
    • …
    corecore