8 research outputs found

    Gender-Specific Cytokine Pathways, Targets, and Biomarkers for the Switch from Health to Adenoma and Colorectal Cancer

    Get PDF
    Studies focusing on gender have shown that differences exist in how the immune system responds to disease and therapy. Understanding how gender influences immunological mechanisms in health and disease and identifying gender-specific biomarkers could lead to specifically tailored treatment and ultimately improve therapeutic success rates. T helper1 (Th1) and Th2 cytokines (Th1/Th2) have pivotal roles in the homeostasis of Th1 and Th2 cell network functions in the immune response but sex steroids affect Th1/Th2 production in different ways and a natural sexual dimorphism in the immune response has been shown. In order to investigate these differences further, we developed Th-cytokine data-driven models of the immune response and evaluated healthy subject peripheral blood samples. Independent cohorts of colorectal cancer and adenoma patients were also studied for comparison purposes. Our results show that the interferon (IFN)γ production pathway for immune response homeostasis is specific to men whilst the interleukin- (IL-) 6 production pathway for immune response homeostasis is specific to women. The IL-10 pathway for restoring immune system resting homeostasis was common to both but was controlled by the respective gender-specific pathways. These gender pathways could well be used as targets and biomarkers in translational research into developing new clinical strategies

    The potential role of thioredoxin 1 and CD30 systems as multiple pathway targets and biomarkers in tumor therapy

    Get PDF
    Our progress in understanding pathological disease mechanisms has led to the identification of biomarkers that have had a considerable impact on clinical practice. It is hoped that the move from generalized to stratified approaches, with the grouping of patients into clinical/therapeutic subgroups according to specific biomarkers, will lead to increasingly more effective clinical treatments in the near future. This success depends on the identification of biomarkers that reflect disease evolution and can be used to predict disease state and therapy response, or represent themselves a target for treatment. Biomarkers can be identified by studying relationships between serum, tissue, or tumor microenvironment parameters and clinical or therapeutic parameters at onset and during the progression of the disease, using systems biology. Given that multiple pathways, such as those responsible for redox and immune regulation, are deregulated or altered in tumors, the future of tumor therapy could lie in the simultaneous targeting of these pathways using extracellular and intracellular targets and biomarkers. With this aim in mind, we evaluated the role of thioredoxin 1, a key redox regulator, and CD30, a cell membrane receptor, in immune regulation. Our results lead us to suggest that the combined use of these biomarkers provides more detailed information concerning the multiple pathways affected in disease and hence the possibility of more effective treatment

    A gender-related action of IFNbeta-therapy was found in multiple sclerosis

    No full text
    Abstract Background Understanding how sexual dimorphism affects the physiological and pathological responses of the immune system is of considerable clinical importance and could lead to new approaches in therapy. Sexual dimorphism has already been noted as an important factor in autoimmune diseases: the aim of this study was to establish whether sexual dimorphism in autoimmune diseases is the result of differing pathways being involved in the regulation of T-helper (Th) cell network homeostasis. Methods We focused on sexually dimorphic changes in the immune response in multiple sclerosis (MS) patients in order to ascertain how these alterations relate to the pathway regulation of the cytokine homeostasis and the Th cell networks. We studied antigen presenting cell (APC)-dependent T cell activation in groups of healthy subjects, in patients under interferon (IFN) β-therapy and untreated. Cytokines, soluble (s) CD30 and the expanded disability status scale (EDSS) were used as biomarkers for T cell differentiation and neurological deficit. Results The data confirm our belief that sexual dimorphism in autoimmune diseases is the result of differing pathways that regulate Th cell network homeostasis: interleukin (IL) 6 pathways in women and IFNγ pathways in men. Given the increased susceptibility of women to MS and the significance of IL6 in the autoimmune process compared to IFNγ, it is logical to assume that IL6 pathways are in some way implicated in the prevalence of autoimmune diseases in women. Indeed, our data indicate that IL6 pathways are also involved in T regulatory (Treg) cell imbalance and an increase in neurological deficit in both men and women groups of MS patients, underlining the autoimmune etiology of multiple sclerosis. In further support of differing cytokine pathways in men and women, we noted that the efficacy of IFNβ-treatment in the re-establishment of Th-network balance and in the delaying of the neurological disability progression is linked to the IL6 pathway in women, but to the IFNγ pathway in men. Lastly, we also identified specific gender biomarkers for the use in therapy. Conclusions The identification of gender-specific drugs is of considerable importance in translational medicine and will undoubtedly lead to more appropriate therapeutic strategies and more successful treatment.</p
    corecore