91 research outputs found

    Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles.

    Get PDF
    Despite aggressive treatment for localized cancer, prostate cancer (PC) remains a leading cause of cancer-related death for American men due to a subset of patients progressing to lethal and incurable metastatic castrate-resistant prostate cancer (CRPC). Organ-confined PC is treated by surgery or radiation with or without androgen deprivation therapy (ADT), while options for locally advanced and disseminated PC include radiation combined with ADT, or systemic treatments including chemotherapy. Progression to CRPC results from failure of ADT, which targets the androgen receptor (AR) signaling axis and inhibits AR-driven proliferation and survival pathways. The exact mechanisms underlying the transition from androgen-dependent PC to CRPC remain incompletely understood. Reactivation of AR has been shown to occur in CRPC despite depletion of circulating androgens by ADT. At the same time, the presence of AR-negative cell populations in CRPC has also been identified. While AR signaling has been proposed as the primary driver of CRPC, AR-independent signaling pathways may represent additional mechanisms underlying CRPC progression. Identification of new therapeutic strategies to target both AR-positive and AR-negative PC cell populations and, thereby, AR-driven as well as non-AR-driven PC cell growth and survival mechanisms would provide a two-pronged approach to eliminate CRPC cells with potential for synthetic lethality. In this review, we provide an overview of AR-dependent and AR-independent molecular mechanisms which drive CRPC, with special emphasis on the role of the Jak2-Stat5a/b signaling pathway in promoting castrate-resistant growth of PC through both AR-dependent and AR-independent mechanisms

    MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway.</p> <p>Methods</p> <p>In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested.</p> <p>Results</p> <p>MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA.</p> <p>Conclusion</p> <p>The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing.</p

    Growth and differentiation factor 15 and NF-κB expression in benign prostatic biopsies and risk of subsequent prostate cancer detection

    Get PDF
    Growth and differentiation factor 15 (GDF-15), also known as macrophage inhibitory cytokine 1 (MIC-1), may act as both a tumor suppressor and promotor and, by regulating NF-κB and macrophage signaling, promote early prostate carcinogenesis. To determine whether expression of these two inflammation-related proteins affect prostate cancer susceptibility, dual immunostaining of benign prostate biopsies for GDF-15 and NF-κB was done in a study of 503 case-control pairs matched on date, age, and race, nested within a historical cohort of 10,478 men. GDF-15 and NF-κB expression levels were positively correlated (r = 0.39; p \u3c 0.0001), and both were significantly lower in African American (AA) compared with White men. In adjusted models that included both markers, the odds ratio (OR) for NF-κB expression was statistically significant, OR =0.87; p = 0.03; 95% confidence interval (CI) =0.77-0.99, while GDF-15 expression was associated with a nominally increased risk, OR =1.06; p = 0.27; 95% CI =0.96-1.17. When modeling expression levels by quartiles, the highest quartile of NF-κB expression was associated with almost a fifty percent reduction in prostate cancer risk (OR =0.51; p = 0.03; 95% CI =0.29-0.92). In stratified models, NF-κB had the strongest negative association with prostate cancer in non-aggressive cases (p = 0.03), older men (p = 0.03), and in case-control pairs with longer follow-up (p = 0.02). Risk associated with GDF-15 expression was best fit using nonlinear regression modeling where both first (p = 0.02) and second (p = 0.03) order GDF-15 risk terms were associated with significantly increased risk. This modeling approach also revealed significantly increased risk associated with GDF-15 expression for subsamples defined by AA race, aggressive disease, younger age, and in case-control pairs with longer follow-up. Therefore, although positively correlated in benign prostatic biopsies, NF-κB and GDF-15 expression appear to exert opposite effects on risk of prostate tumor development

    STAT5 Induces Androgen Receptor (AR) Gene Transcription in Prostate Cancer and Offers a Druggable Pathway to Target AR Signaling

    Get PDF
    Androgen receptor (AR) drives prostate cancer (PC) growth and progression, and targeting AR signaling is the mainstay of pharmacological therapies for PC. Resistance develops relatively fast as a result of refueled AR activity. A major gap in the field is the lack of understanding of targetable mechanisms that induce persistent AR expression in castrate-resistant PC (CRPC). This study uncovers an unexpected function of active Stat5 signaling, a known promoter of PC growth and clinical progression, as a potent inducer of AR gene transcription. Stat5 suppression inhibited AR gene transcription in preclinical PC models and reduced the levels of wild-type, mutated, and truncated AR proteins. Pharmacological Stat5 inhibition by a specific small-molecule Stat5 inhibitor down-regulated Stat5-inducible genes as well as AR and AR-regulated genes and suppressed PC growth. This work introduces the concept of Stat5 as an inducer of AR gene transcription in PC. Pharmacological Stat5 inhibitors may represent a new strategy for suppressing AR and CRPC growth

    Antral atrophy, intestinal metaplasia, and preneoplastic markers in Mexican children with Helicobacter pylori–positive and Helicobacter pylori–negative gastritis

    Get PDF
    Chronic inflammation and infection are major risk factors for gastric carcinogenesis in adults. As chronic gastritis is common in Mexican children, diagnosis of Helicobacter pylori and other causes of gastritis are critical for the identification of children who would benefit from closer surveillance. Antral biopsies from 82 Mexican children (mean age 8.3±4.8y) with chronic gastritis (36 H. pylori +, 46 H. pylori -) were examined for gastritis activity, atrophy, intestinal metaplasia, and immunohistochemical expression of gastric carcinogenesis biomarkers CDX2, ephrin type-B receptor 4, matrix metalloproteinase 3 (MMP3), macrophage migration inhibitory factor (MIF), p53, β-catenin, and E-cadherin. Atrophy was diagnosed in 7/82 (9%) and intestinal metaplasia in 5/82 (6%) by routine histology, while 6 (7%) additional children (3 H. pylori +) exhibited aberrant CDX2 expression without intestinal metaplasia. Significant positive correlations were seen between EphB4, MMP3, and MIF (p<0.0001). Atrophy and follicular pathology were more frequent in H. pylori + biopsies (p<0.0001), while intestinal metaplasia and CDX2 expression showed no significant correlation with H. pylori status. Antral biopsies demonstrating atrophy, intestinal metaplasia, and/or aberrant CDX2 expression were seen in 21.95 % (18/82) of the children, potentially identifying those who would benefit from closer surveillance and preventive dietary strategies. Biomarkers CDX2, EphB4, MMP3, and MIF may be useful in the work-up of pediatric gastritis

    Persistent Exposure to Mycoplasma Induces Malignant Transformation of Human Prostate Cells

    Get PDF
    Recent epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including those of the prostate. The American Cancer Society, estimates that approximately 20% of all worldwide cancers are caused by infection. Mycoplasma, a genus of bacteria that lack a cell wall, are among the few prokaryotes that can grow in close relationship with mammalian cells, often without any apparent pathology, for extended periods of time. In this study, the capacity of Mycoplasma genitalium, a prevalent sexually transmitted infection, and Mycoplasma hyorhinis, a mycoplasma found at unusually high frequency among patients with AIDS, to induce a malignant phenotype in benign human prostate cells (BPH-1) was evaluated using a series of in vitro and in vivo assays. After 19 weeks of culture, infected BPH-1 cells achieved anchorage-independent growth and increased migration and invasion. Malignant transformation of infected BPH-1 cells was confirmed by the formation of xenograft tumors in athymic mice. Associated with these changes was an increase in karyotypic entropy, evident by the accumulation of chromosomal aberrations and polysomy. This is the first report describing the capacity of M. genitalium or M. hyorhinis infection to lead to the malignant transformation of benign human epithelial cells and may serve as a model to further study the relationship between prostatitis and prostatic carcinogenesis

    Cyclophosphamide-Induced Cystitis Increases Bladder CXCR4 Expression and CXCR4-Macrophage Migration Inhibitory Factor Association

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in cystitis and a non-cognate ligand of the chemokine receptor CXCR4 in vitro. We studied whether CXCR4-MIF associations occur in rat bladder and the effect of experimental cystitis. METHODS AND FINDINGS: Twenty male rats received saline or cyclophosphamide (40 mg/kg; i.p.; every 3(rd) day) to induce persistent cystitis. After eight days, urine was collected and bladders excised under anesthesia. Bladder CXCR4 and CXCR4-MIF co-localization were examined with immunhistochemistry. ELISA determined MIF and stromal derived factor-1 (SDF-1; cognate ligand for CXCR4) levels. Bladder CXCR4 expression (real-time RTC-PCR) and protein levels (Western blotting) were examined. Co-immunoprecipitations studied MIF-CXCR4 associations.Urothelial basal and intermediate (but not superficial) cells in saline-treated rats contained CXCR4, co-localized with MIF. Cyclophosphamide treatment caused: 1) significant redistribution of CXCR4 immunostaining to all urothelial layers (especially apical surface of superficial cells) and increased bladder CXCR4 expression; 2) increased urine MIF with decreased bladder MIF; 3) increased bladder SDF-1; 4) increased CXCR4-MIF associations. CONCLUSIONS: These data demonstrate CXCR4-MIF associations occur in vivo in rat bladder and increase in experimental cystitis. Thus, CXCR4 represents an alternative pathway for MIF-mediated signal transduction during bladder inflammation. In the bladder, MIF may compete with SDF-1 (cognate ligand) to activate signal transduction mediated by CXCR4
    • …
    corecore