46 research outputs found

    Report on 2016 American Geophysical Union Fall Meeting

    No full text

    自然栽培水田における窒素収支および窒素起源の検討

    No full text

    Application of Stable Isotopic Compositions of Rainfall Runoff for Evaporation Estimation in Thailand Mekong River Basin

    No full text
    The Mekong River Basin comprises approximately 38% of Southeast Asia. Our study area comprises the right-bank tributaries, which drain a substantial portion of Northeast Thailand. This study aimed to estimate the evaporative losses from streams during the 2013–2015 period. The normal and warm El Niño–Southern Oscillation (ENSO) phases caused higher temperatures and low rainfall in the 2014–2015 period. The results show that the local meteoric water line for precipitation isotopes had seasonal variation due to variable precipitation. The enrichment of river isotopes indicated that streams lost an average of 4% of their water through evaporation. During the cooling ENSO phase, significant evaporation occurs due to the deep convection that typically occurs in tropical regions. In contrast, evaporation was low during the warm ENSO phase because of its geographic location. The El Niño year’s isotope values were significantly more enriched than the La Niña year’s, showing that precipitation and positive temperature anomalies affected the isotopic compositions in the continental basin. Furthermore, the deuterium excess helped distinguish the relative contributions of the wet and dry seasonal sources to the moisture origin, indicating that the predominant source of moisture is inland evaporation, with a small contribution from the ocean
    corecore