163 research outputs found

    Melting Points of Inorganic Fluorides

    Full text link

    High permissivity of the fish cell line SSN-1 for piscine nodaviruses.

    Get PDF
    Seventeen isolates of piscine nodavirus from larvae or juveniles of 13 marine fish species affected with viral nervous necrosis (VNN) were examined for their infectivity to a fish cell line SSN-1. Based on cytopathic effects (CPE) and virus antigen detection by fluorescent antibody technique (FAT) after incubation at 25°C, the infectivity of these virus isolates was divided into 4 groups. Group 1, including 9 virus isolates from 4 species of grouper, 2 species of sea bass, barramundi, rock porgy, and Japanese flounder showed CPE characterized by rounded, granular cells with heavy cytoplasmic vacuoles within 3 d post-incubation (p.i.), and the monolayer partially or completely disintegrated over 3 to 6 d p.i. Scattered FAT-positive cells appeared at 3 h p.i. and spread through the cell sheet with an increasing fluorescence signal over 24 h p.i. Group 2, consisting of 3 virus isolates from striped jack, induced CPE with thin or rounded, granular, refractile cells without conspicuous vacuole formation, and extensive FAT-positive reaction was observed in a time course similar to that of Group 1. Cells inoculated with Group 3 (1 isolate from tiger puffer) developed no distinct CPE but viral infection was evidenced by localized FAT-positive cells. There were no FAT-positive cells in Group 4, which included 4 isolates from Japanese flounder, Pacific cod and Atlantic halibut. However, when incubation was performed at 20°C, the SSN-1 cells inoculated with the Group 3 isolate showed CPE similar to that of Group 1 and extensive FAT-positive reaction. Evidence of virus proliferation at 20°C was also obtained in Group 4 isolates. The virus titers in the infected fish varied from 1011 to 1016 tissue culture infectious dose (TCID50) g-1 of fish. There is a good correlation between these infectivities to the SSN-1 cells and the coat protein gene genotypes of the isolates. The present results indicate that SSN-1 cells are useful for propagating and differentiating genotypic variants of piscine nodavirus

    microRNA-875-5p plays critical role for mesenchymal condensation in epithelial-mesenchymal interaction during tooth development

    Get PDF
    Epithelial-mesenchymal interaction has critical roles for organ development including teeth, during which epithelial thickening and mesenchymal condensation are initiated by precise regulation of the signaling pathway. In teeth, neural crest-derived mesenchymal cells expressed PDGF receptors migrate and become condensed toward invaginated epithelium. To identify the molecular mechanism of this interaction, we explored the specific transcriptional start sites (TSSs) of tooth organs using cap analysis of gene expression (CAGE). We identified a tooth specific TSS detected in the chromosome 15qD1 region, which codes microRNA-875 (mir875). MiR875-5p is specifically expressed in dental mesenchyme during the early stage of tooth development. Furthermore, PRRX1/2 binds to the mir875 promoter region and enhances the expression of mir875. To assess the role of miR875-5p in dental mesenchyme, we transfected mimic miR875-5p into mouse dental pulp (mDP) cells, which showed that cell migration toward dental epithelial cells was significantly induced by miR875-5p via the PDGF signaling pathway. Those results also demonstrated that miR875-5p induces cell migration by inhibiting PTEN and STAT1, which are regulated by miR875-5p as part of post-transcriptional regulation. Together, our findings indicate that tooth specific miR875-5p has important roles in cell condensation of mesenchymal cells around invaginated dental epithelium and induction of epithelial-mesenchymal interaction

    Development and characterization of IL-21–producing CD4+ T cells

    Get PDF
    It has recently been shown that interleukin (IL)-21 is produced by Th17 cells, functions as an autocrine growth factor for Th17 cells, and plays critical roles in autoimmune diseases. In this study, we investigated the differentiation and characteristics of IL-21–producing CD4+ T cells by intracellular staining. Unexpectedly, we found that under Th17-polarizing conditions, the majority of IL-21–producing CD4+ T cells did not produce IL-17A and -17F. We also found that IL-6 and -21 potently induced the development of IL-21–producing CD4+ T cells without the induction of IL-4, IFN-γ, IL-17A, or IL-17F production. On the other hand, TGF-β inhibited IL-6– and IL-21–induced development of IL-21–producing CD4+ T cells. IL-2 enhanced the development of IL-21–producing CD4+ T cells under Th17-polarizing conditions. Finally, IL-21–producing CD4+ T cells exhibited a stable phenotype of IL-21 production in the presence of IL-6, but retained the potential to produce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions. These results suggest that IL-21–producing CD4+ T cells exhibit distinct characteristics from Th17 cells and develop preferentially in an IL-6–rich environment devoid of TGF-β, and that IL-21 functions as an autocrine growth factor for IL-21–producing CD4+ T cells

    Proteolytic Processing of Stat6 Signaling in Mast Cells as a Negative Regulatory Mechanism

    Get PDF
    Accumulating evidence has shown the importance of Stat6-mediated signaling in allergic diseases. In this study, we show a novel regulatory mechanism of Stat6-mediated signaling in mast cells. When Stat6 is activated by interleukin (IL)-4 and translocated to the nucleus, Stat6 is cleaved by a nucleus-associated protease in mast cells. The cleaved 65-kD Stat6 lacks the COOH-terminal transactivation domain and functions as a dominant-negative molecule to Stat6-mediated transcription. The retrovirus-mediated expression of cleavage-resistant Stat6 mutants prolongs the nuclear accumulation of Stat6 upon IL-4 stimulation and enhances IL-4–induced gene expression and growth inhibition in mast cells. These results indicate that the proteolytic processing of Stat6 functions as a lineage-specific negative regulator of Stat6-dependent signaling in mast cells, and thus suggest that it may account for the limited role of Stat6 in IL-4 signaling in mast cells

    The C-Terminal Fragment of Prostate-Specific Antigen, a 2331 Da Peptide, as a New Urinary Pathognomonic Biomarker Candidate for Diagnosing Prostate Cancer

    Get PDF
    Background and Objectives: Prostate cancer (PCa) is one of the most common cancers and leading cause of cancer-related deaths in men. Mass screening has been carried out since the 1990s using prostate-specific antigen (PSA) levels in the serum as a PCa biomarker. However, although PSA is an excellent organ-specific marker, it is not a cancer-specific marker. Therefore, the aim of this study was to discover new biomarkers for the diagnosis of PCa. Materials and Methods: We focused on urine samples voided following prostate massage (digital rectal examination [DRE]) and conducted a peptidomic analysis of these samples using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS_n). Urinary biomaterials were concentrated and desalted using CM-Sepharose prior to the following analyses being performed by MALDI-TOF/MS_n: 1) differential analyses of mass spectra; 2) determination of amino acid sequences; and 3) quantitative analyses using a stable isotope-labeled internal standard. Results: Multivariate analysis of the MALDI-TOF/MS mass spectra of urinary extracts revealed a 2331 Da peptide in urine samples following DRE. This peptide was identified as a C-terminal PSA fragment composed of 19 amino acid residues. Moreover, quantitative analysis of the relationship between isotope-labeled synthetic and intact peptides using MALDI-TOF/MS revealed that this peptide may be a new pathognomonic biomarker candidate that can differentiate PCa patients from non-cancer subjects. Conclusion: The results of the present study indicate that the 2331 Da peptide fragment of PSA may become a new pathognomonic biomarker for the diagnosis of PCa. A further large-scale investigation is currently underway to assess the possibility of using this peptide in the early detection of PCa

    Nephronectin plays critical roles in Sox2 expression and proliferation in dental epithelial stem cells via EGF-like repeat domains

    Get PDF
    Tooth development is initiated by epithelial-mesenchymal interactions via basement membrane (BM) and growth factors. In the present study, we found that nephronectin (Npnt), a component of the BM, is highly expressed in the developing tooth. Npnt localizes in the BM on the buccal side of the tooth germ and shows an expression pattern opposite that of the dental epithelial stem cell marker Sox2. To identify the roles of Npnt during tooth development, we performed knockdown and overexpression experiments using ex vivo organ and dental epithelial cell cultures. Our findings showed that loss of Npnt induced ectopic Sox2-positive cells and reduced tooth germ size. Over expression of Npnt showed increased proliferation, whereas the number of Sox2-positive cells was decreased in dental epithelial cells. Npnt contains 5 EGF-like repeat domains, as well as an RGD sequence and MAM domain. We found that the EGF-like repeats are critical for Sox2 expression and cell proliferation. Furthermore, Npnt activated the EGF receptor (EGFR) via the EGF-like repeat domains and induced the PI3K-Akt signaling pathway. Our results indicate that Npnt plays a critical scaffold role in dental epithelial stem cell differentiation and proliferation, and regulates Sox2 expression during tooth development
    corecore