873 research outputs found

    Gauge Theory of Composite Fermions: Particle-Flux Separation in Quantum Hall Systems

    Full text link
    Fractionalization phenomenon of electrons in quantum Hall states is studied in terms of U(1) gauge theory. We focus on the Chern-Simons(CS) fermion description of the quantum Hall effect(QHE) at the filling factor ν=p/(2pq±1)\nu=p/(2pq\pm 1), and show that the successful composite-fermions(CF) theory of Jain acquires a solid theoretical basis, which we call particle-flux separation(PFS). PFS can be studied efficiently by a gauge theory and characterized as a deconfinement phenomenon in the corresponding gauge dynamics. The PFS takes place at low temperatures, TTPFST \leq T_{\rm PFS}, where each electron or CS fermion splinters off into two quasiparticles, a fermionic chargeon and a bosonic fluxon. The chargeon is nothing but Jain's CF, and the fluxon carries 2q2q units of CS fluxes. At sufficiently low temperatures TTBC(<TPFS)T \leq T_{\rm BC} (< T_{\rm PFS}), fluxons Bose-condense uniformly and (partly) cancel the external magnetic field, producing the correlation holes. This partial cancellation validates the mean-field theory in Jain's CF approach. FQHE takes place at T<TBCT < T_{\rm BC} as a joint effect of (i) integer QHE of chargeons under the residual field ΔB\Delta B and (ii) Bose condensation of fluxons. We calculate the phase-transition temperature TPFST_{\rm PFS} and the CF mass. PFS is a counterpart of the charge-spin separation in the t-J model of high-TcT_{\rm c} cuprates in which each electron dissociates into holon and spinon. Quasiexcitations and resistivity in the PFS state are also studied. The resistivity is just the sum of contributions of chargeons and fluxons, and ρxx\rho_{xx} changes its behavior at T=TPFST = T_{\rm PFS}, reflecting the change of quasiparticles from chargeons and fluxons at T<TPFST < T_{\rm PFS} to electrons at TPFS<TT_{\rm PFS} < T.Comment: 18 pages, 7 figure

    Phase Structure of Repulsive Hard-Core Bosons in a Stacked Triangular Lattice

    Full text link
    In this paper, we study phase structure of a system of hard-core bosons with a nearest-neighbor (NN) repulsive interaction in a stacked triangular lattice. Hamiltonian of the system contains two parameters one of which is the hopping amplitude tt between NN sites and the other is the NN repulsion VV. We investigate the system by means of the Monte-Carlo simulations and clarify the low and high-temperature phase diagrams. There exist solid states with density of boson ρ=13\rho={1 \over 3} and 23{2\over 3}, superfluid, supersolid and phase-separated state. The result is compared with the phase diagram of the two-dimensional system in a triangular lattice at vanishing temperature.Comment: 4+epsilon pages, 11 figures, Version to be published in Phys.Rev.

    Casimir Energy of the Universe and the Dark Energy Problem

    Full text link
    We regard the Casimir energy of the universe as the main contribution to the cosmological constant. Using 5 dimensional models of the universe, the flat model and the warped one, we calculate Casimir energy. Introducing the new regularization, called {\it sphere lattice regularization}, we solve the divergence problem. The regularization utilizes the closed-string configuration. We consider 4 different approaches: 1) restriction of the integral region (Randall-Schwartz), 2) method of 1) using the minimal area surfaces, 3) introducing the weight function, 4) {\it generalized path-integral}. We claim the 5 dimensional field theories are quantized properly and all divergences are renormalized. At present, it is explicitly demonstrated in the numerical way, not in the analytical way. The renormalization-group function (\be-function) is explicitly obtained. The renormalization-group flow of the cosmological constant is concretely obtained.Comment: 12 pages, 13 figures, Proceedings of DSU2011(2011.9.26-30,Beijin

    Fluctuation effects of gauge fields in the slave-boson t-J model

    Full text link
    We present a quantitative study of the charge-spin separation(CSS) phenomenon in a U(1) gauge theory of the t-J model of high-Tc superconductures. We calculate the critical temperature of confinement-deconfinement phase transition below which the CSS takes place.Comment: Latex, 9 pages, 3 figure
    corecore