91 research outputs found

    Roles of PTEN with DNA Repair in Parkinson’s Disease

    Get PDF
    Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson’s disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson’s disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson’s disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson’s disease related to reduce oxidative stress for an efficient therapeutic intervention

    Cell Cycle Regulation via the p53, PTEN, and BRCA1 Tumor Suppressors

    Get PDF
    Multiple cell cycle regulatory proteins play an important role in oncogenesis. Cancer cells may arise from dysregulation of various genes involved in the regulation of the cell cycle. In addition, cyclin-dependent kinase inhibitors are regarded as key regulators for cancer cell proliferation. Accordingly, permission of impaired cells by cell cycle checkpoints suppresses carcinogenesis. P53, a multifunctional protein, controls G1-S transition, which is the strongest tumor suppressor involved in the regulation of cell cycle. The p53 is stimulated by cellular stress like oxidative stress. Upon activation, p53 leads to cell cycle arrest and promotes DNA repair; otherwise, it induces apoptosis. One of the target effectors of p53 is the phosphatase and tensin homolog deleted on chromosome 10 (PTEN). The tumor suppressor PTEN is a dual-specificity phosphatase which has protein phosphatase activity and lipid phosphatase activity that antagonizes PI3K/AKT activity. The PI3K/AKT cell survival pathway is shown as regulator of cell proliferation. The p53 cooperates with PTEN and might be an essential barrier in development of cancers. BRCA1 plays an important role in DNA repair processes related to maintenance of genomic integrity and control of cell growth. The inactivation of these tumor suppressor proteins confers a growth advantage of cancer. This chapter summarizes the function of several tumor suppressors in the cell cycle regulation

    非アルコール性脂肪性肝炎における肝細胞へのα-synucleinの蓄積と病理組織学的診断における有用性

    Get PDF
    Backgrounds: Nonalcoholic steatohepatitis (NASH) is characterized by fat deposition, inflammation, and hepatocellular damage. The diagnosis of NASH is confirmed pathologically, and hepatocyte ballooning is an important finding for definite diagnosis. Recently, α-synuclein deposition in multiple organs was reported in Parkinson’s disease. Since it was reported that α synuclein is taken up by hepatocytes via connexin 32, the expression of α-synuclein in the liver in NASH is of interest. The accumulation of α-synuclein in the liver in NASH was investigated. Immunostaining for p62, ubiquitin, and α-synuclein was performed, and the usefulness of immunostaining in pathological diagnosis was examined. Methods: Liver biopsy tissue specimens from 20 patients were evaluated. Several antibodies against α-synuclein, as well as antibodies against connexin 32, p62, and ubiquitin were used for immunohistochemical analyses. Staining results were evaluated by several pathologists with varying experience, and the diagnostic accuracy of ballooning was compared. Results: Polyclonal α-synuclein antibody, not the monoclonal antibody, reacted with eosinophilic aggregates in ballooning cells. Expression of connexin 32 in degenerating cells was also demonstrated. Antibodies against p62 and ubiquitin also reacted with some of the ballooning cells. In the pathologists’ evaluations, the highest interobserver agreement was obtained with hematoxylin and eosin (H&E)-stained slides, followed by slides immunostained for p62 and α-synuclein, and there were cases with different results between H&E staining and immunostaining Conclusion: These results indicate the incorporation of degenerated α-synuclein into ballooning cells, suggesting the involvement of α-synuclein in the pathogenesis of NASH. The combination of immunostaining including polyclonal α-synuclein may contribute to improving the diagnosis of NASH

    Dietary Cholic Acid Exacerbates Liver Fibrosis in NASH Model of Sprague–Dawley Rats Fed a High-Fat and High-Cholesterol Diet

    Get PDF
    Background: Recently, we established a novel rodent model of nonalcoholic steatohepatitis (NASH) with advanced fibrosis induced by a high-fat and high-cholesterol (HFC) diet containing cholic acid (CA), which is known to cause hepatotoxicity. The present study aimed to elucidate the direct impact of dietary CA on the progression of NASH induced by feeding the HFC diet. Methods: Nine-week-old male Sprague–Dawley rats were randomly assigned to receive a normal, HFC, or CA-supplemented (0.1%, 0.5% or 2.0%, w/w) HFC diet for 9 weeks. Results: Histopathological assessment revealed that the supplementation of CA dose-dependently aggravated hepatic steatosis, inflammation, and fibrosis, reaching stage 4 cirrhosis in the 2.0% CA diet group. In contrast, the rats that were fed the HFC diet without any added CA developed mild steatosis and inflammation without fibrosis. The hepatic cholesterol content and mRNA expression involved in inflammatory response and fibrogenesis was higher in a CA dose-dependent manner. The hepatic chenodeoxycholic acid levels were higher in 2.0% CA diet group than in the control, although hepatic levels of total bile acid and CA did not increase dose-dependently with CA intake. Conclusion: Adding CA to the HFC diet altered bile acid metabolism and inflammatory response and triggered the development of fibrosis in the rat liver

    Smad Phospho-Isoforms for Hepatocellular Carcinoma Risk Assessment in Patients with Nonalcoholic Steatohepatitis

    Get PDF
    Nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) sometimes occurs in mildly fibrotic livers, while HCC incidence in NASH-related cirrhosis is lower than and less predictable than in hepatitis C virus (HCV)-related cirrhosis. Transforming growth factor (TGF)-β signaling in hepatocytic nuclei is implicated in fibrosis and carcinogenesis. TGF-βtype I receptor (TβRI) and c-Jun N-terminal kinase (JNK) differentially phosphorylate the mediator Smad3, resulting in 2 distinct phospho-isoforms: C-terminally phosphorylated Smad3 (pSmad3C) and linker-phosphorylated Smad3 (pSmad3L). In mature hepatocytes, oncogenic signaling via the JNK/pSmad3L pathway antagonizes signaling via the tumor-suppressive TβRI/pSmad3C pathway. We immunohistochemically examined domain-specific Smad3 phosphorylation in liver biopsy specimens from 30 NASH patients representing different fibrotic stages and 20 chronically infected hepatitis C patients as controls, correlating Smad3 phosphorylation with clinical course. HCC occurred during follow-up in 11 of 12 NASH patients with abundant pSmad3L and limited pSmad3C but in only 2 of 18 with limited pSmad3L. In contrast, HCC developed in 12 of 15 NASH patients with limited pSmad3C but only 1 of 15 with abundant pSmad3C. Two of fourteen NASH patients with mild fibrosis developed HCC, their hepatocytic nuclei showed abundant pSmad3L and limited pSmad3C. Five of sixteen patients with severe fibrosis did not develop HCC, their hepatocytic nuclei showed limited pSmad3L and abundant pSmad3C. Smad phospho-isoforms may represent important biomarkers predicting HCC in NASH and potential therapeutic targets for preventing NASH-related HCC

    A non-obese, diet-induced animal model of nonalcoholic steatohepatitis in Wistar/ST rats compared to Sprague-Dawley rats

    Get PDF
    Background: Non-alcoholic steatohepatitis (NASH), a subtype of non-alcoholic fatty liver disease (NAFLD), is a potentially progressive liver disease that can lead to cirrhosis. Obesity increases the risk of NAFLD/NASH, but this disease can also be observed in non-obese individuals. Methods: We investigated the metabolic and histopathological changes in 13 obesity-resistant Slc:Wistar/ST rats fed a high-fat and high-cholesterol (HFC) diet for 9 weeks, and also retrospectively compared the results of 41 Sprague-Dawley (SD) rats that were previously fed with the same protocol to the results of the Slc:Wistar/ST rats. Results: Of the 13 Slc:Wistar/ST rats fed an HFC diet containing 1.25% or 2.5% cholesterol, 11 (84.6%) developed histologically proven NASH without obesity, an increased visceral fat volume, insulin resistance, histopatological severe lobular inflammation and severe hepatic fibrosis. The HFC diets significantly increased the levels of mRNA encoding collagen type I alpha 1 (COL1A1), transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1). The SD rats also developed NASH without obesity, an increased visceral fat volume and insulin resistance, but the metabolic and histopathological effects, such as lower serum adiponectin levels, higher serum leptin levels, histopatological severe lobular inflammation and hepatic fibrosis, seemed to be more pronounced in the SD rats than in the Slc:Wistar/ST rats. Conclusions: These two rat models may reflect the human etiology of NASH that is influenced by dietary factors, and the obesity-resistant Slc:Wistar/ST rat model may be particularly useful for elucidating the pathophysiological mechanism of the so-called “lean NASH”

    Molecular imaging analysis of microvesicular and macrovesicular lipid droplets in non‑alcoholic fatty liver disease by Raman microscopy

    Get PDF
    Predominant evidence of non-alcoholic fatty liver disease (NAFLD) is the accumulation of excess lipids in the liver. A small group with NAFLD may have a more serious condition named non-alcoholic steatohepatitis (NASH). However, there is a lack of investigation of the accumulated lipids with spatial and molecular information. Raman microscopy has the potential to characterise molecular species and structures of lipids based on molecular vibration and can achieve high spatial resolution at the organelle level. In this study, we aim to demonstrate the feasibility of Raman microscopy for the investigation of NAFLD based on the molecular features of accumulated lipids. By applying the Raman microscopy to the liver of the NASH model mice, we succeeded in visualising the distribution of lipid droplets (LDs) in hepatocytes. The detailed analysis of Raman spectra revealed the difference of molecular structural features of the LDs, such as the degree of saturation of lipids in the LDs. We also found that the inhomogeneous distribution of cholesterol in the LDs depending on the histology of lipid accumulation. We visualised and characterised the lipids of NASH model mice by Raman microscopy at organelle level. Our findings demonstrated that the Raman imaging analysis was feasible to characterise the NAFLD in terms of the molecular species and structures of lipids

    X box-binding protein1を介した小胞体ストレス応答不全は非アルコール性脂肪肝炎モデルマウスにおける肝部分切除後の肝再生不良の主要な要因である

    Get PDF
    Background Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Poor regeneration after hepatectomy in NAFLD is well recognized, but the mechanism is unclear. Endoplasmic reticulum (ER) stress plays an important role in the development of NAFLD. Here, we show that an impaired ER stress response contributes to poor liver regeneration in partially hepatectomized mice. Methods Non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis (NASH) was induced in mice using our patented feed and 70% partial hepatectomy (PH) was performed. Mice were sacrificed 0, 4, 8, 24, or 48 hours, or 7 days after PH, and liver regeneration and the mRNA expression of ER stress markers were assessed. Results NAFLD activity score was calculated as 4–6 points for NAFL and 7 points for NASH. NASH was characterized by inflammation and high ER stress marker expression before PH. After PH, NASH mice showed poorer liver regeneration than controls. High expression of proinflammatory cytokine genes was present in NASH mice 4 hours after PH. Xbp1-s mRNA expression was high in control and NAFL mice after PH, but no higher in NASH mice. Conclusions Dysfunction of the ER stress response might be a cause of poor liver regeneration in NASH

    Assessment of Ultra-Early-Stage Liver Fibrosis in Human Non-Alcoholic Fatty Liver Disease by Second-Harmonic Generation Microscopy

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is associated with the chronic progression of fibrosis. In general, the progression of liver fibrosis is determined by a histopathological assessment with a collagen-stained section; however, the ultra-early stage of liver fibrosis is challenging to identify because of the low sensitivity in the collagen-selective staining method. In the present study, we demonstrate the feasibility of second-harmonic generation (SHG) microscopy in the histopathological diagnosis of the liver of NAFLD patients for the quantitative assessment of the ultra-early stage of fibrosis. We investigated four representative NAFLD patients with early stages of fibrosis. SHG microscopy visualised well-matured fibrotic structures and early fibrosis diffusely involving liver tissues, whereas early fibrosis is challenging to be identified by conventional histopathological methods. Furthermore, the SHG emission directionality analysis revealed the maturation of each collagen fibre of each patient. As a result, SHG microscopy is feasible for assessing liver fibrosis on NAFLD patients, including the ultra-early stage of liver fibrosis that is difficult to diagnose by the conventional histopathological method. The assessment method of the ultra-early fibrosis by using SHG microscopy may serve as a crucial means for pathological, clinical, and prognostic diagnosis of NAFLD patients
    corecore