7 research outputs found

    Neutrino Mass Bounds from Neutrinoless Double Beta Decays and Large Scale Structures

    Full text link
    We investigate the way how the total mass sum of neutrinos can be constrained from the neutrinoless double beta decay and cosmological probes with cosmic microwave background (WMAP 3-year results), large scale structures including 2dFGRS and SDSS data sets. First we discuss, in brief, on the current status of neutrino mass bounds from neutrino beta decays and cosmic constrain within the flat ΛCMD\Lambda CMD model. In addition, we explore the interacting neutrino dark-energy model, where the evolution of neutrino masses is determined by quintessence scalar filed, which is responsable for cosmic acceleration today. Assuming the flatness of the universe, the constraint we can derive from the current observation is ∑mν<0.87\sum m_{\nu} < 0.87eV at the 95 % confidence level, which is consistent with ∑mν<0.68\sum m_{\nu} < 0.68eV in the flat ΛCDM\Lambda CDM model. Finally we discuss the future prospect of the neutrino mass bound with weak-lensing effects.Comment: Latex 12 pages, 3 figures, correct typos and add new reference

    Primordial Neutrinos, Cosmological Perturbations in Interacting Dark-Energy Model: CMB and LSS

    Full text link
    We present cosmological perturbation theory in neutrinos probe interacting dark-energy models, and calculate cosmic microwave background anisotropies and matter power spectrum. In these models, the evolution of the mass of neutrinos is determined by the quintessence scalar field, which is responsible for the cosmic acceleration today. We consider several types of scalar field potentials and put constraints on the coupling parameter between neutrinos and dark energy. Assuming the flatness of the universe, the constraint we can derive from the current observation is ∑mν<0.87eV\sum m_{\nu} < 0.87 eV at the 95 % confidence level for the sum over three species of neutrinos. We also discuss on the stability issue of the our model and on the impact of the scattering term in Boltzmann equation from the mass-varying neutrinos.Comment: 26 pages Revtex, 11 figures, Add new contents and reference

    Scalar field-perfect fluid correspondence and nonlinear perturbation equations

    Full text link
    The properties of dynamical Dark Energy (DE) and, in particular, the possibility that it can form or contribute to stable inhomogeneities, have been widely debated in recent literature, also in association to a possible coupling between DE and Dark Matter (DM). In order to clarify this issue, in this paper we present a general framework for the study of the nonlinear phases of structure formation, showing the equivalence between two possible descriptions of DE: a scalar field \phi self-interacting through a potential V(\phi) and a perfect fluid with an assigned negative equation of state w(a). This enables us to show that, in the presence of coupling, the mass of DE quanta may increase where large DM condensations are present, so that also DE may partake to the clustering process.Comment: 16 pages, accepted for publication in JCA

    Large-scale instability in interacting dark energy and dark matter fluids

    Get PDF
    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyze the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime.Comment: 15 pages, 5 figures. New reference; published versio

    Large-scale instability in interacting dark energy and dark matter fluids

    Get PDF
    If dark energy interacts with dark matter, this gives a new approach to the coincidence problem. But interacting dark energy models can suffer from pathologies. We consider the case where the dark energy is modelled as a fluid with constant equation of state parameter w. Non-interacting constant-w models are well behaved in the background and in the perturbed universe. But the combination of constant w and a simple interaction with dark matter leads to an instability in the dark sector perturbations at early times: the curvature perturbation blows up on super-Hubble scales. Our results underline how important it is to carefully analyze the relativistic perturbations when considering models of coupled dark energy. The instability that we find has been missed in some previous work where the perturbations were not consistently treated. The unstable mode dominates even if adiabatic initial conditions are used. The instability also arises regardless of how weak the coupling is. This non-adiabatic instability is different from previously discovered adiabatic instabilities on small scales in the strong-coupling regime.Comment: 15 pages, 5 figures. New reference; published versio
    corecore