7 research outputs found
Neutrino Mass Bounds from Neutrinoless Double Beta Decays and Large Scale Structures
We investigate the way how the total mass sum of neutrinos can be constrained
from the neutrinoless double beta decay and cosmological probes with cosmic
microwave background (WMAP 3-year results), large scale structures including
2dFGRS and SDSS data sets. First we discuss, in brief, on the current status of
neutrino mass bounds from neutrino beta decays and cosmic constrain within the
flat model. In addition, we explore the interacting neutrino
dark-energy model, where the evolution of neutrino masses is determined by
quintessence scalar filed, which is responsable for cosmic acceleration today.
Assuming the flatness of the universe, the constraint we can derive from the
current observation is eV at the 95 % confidence level,
which is consistent with eV in the flat
model. Finally we discuss the future prospect of the neutrino mass bound with
weak-lensing effects.Comment: Latex 12 pages, 3 figures, correct typos and add new reference
Primordial Neutrinos, Cosmological Perturbations in Interacting Dark-Energy Model: CMB and LSS
We present cosmological perturbation theory in neutrinos probe interacting
dark-energy models, and calculate cosmic microwave background anisotropies and
matter power spectrum. In these models, the evolution of the mass of neutrinos
is determined by the quintessence scalar field, which is responsible for the
cosmic acceleration today. We consider several types of scalar field potentials
and put constraints on the coupling parameter between neutrinos and dark
energy. Assuming the flatness of the universe, the constraint we can derive
from the current observation is at the 95 % confidence
level for the sum over three species of neutrinos. We also discuss on the
stability issue of the our model and on the impact of the scattering term in
Boltzmann equation from the mass-varying neutrinos.Comment: 26 pages Revtex, 11 figures, Add new contents and reference
Scalar field-perfect fluid correspondence and nonlinear perturbation equations
The properties of dynamical Dark Energy (DE) and, in particular, the
possibility that it can form or contribute to stable inhomogeneities, have been
widely debated in recent literature, also in association to a possible coupling
between DE and Dark Matter (DM). In order to clarify this issue, in this paper
we present a general framework for the study of the nonlinear phases of
structure formation, showing the equivalence between two possible descriptions
of DE: a scalar field \phi self-interacting through a potential V(\phi) and a
perfect fluid with an assigned negative equation of state w(a). This enables us
to show that, in the presence of coupling, the mass of DE quanta may increase
where large DM condensations are present, so that also DE may partake to the
clustering process.Comment: 16 pages, accepted for publication in JCA
Large-scale instability in interacting dark energy and dark matter fluids
If dark energy interacts with dark matter, this gives a new approach to the
coincidence problem. But interacting dark energy models can suffer from
pathologies. We consider the case where the dark energy is modelled as a fluid
with constant equation of state parameter w. Non-interacting constant-w models
are well behaved in the background and in the perturbed universe. But the
combination of constant w and a simple interaction with dark matter leads to an
instability in the dark sector perturbations at early times: the curvature
perturbation blows up on super-Hubble scales. Our results underline how
important it is to carefully analyze the relativistic perturbations when
considering models of coupled dark energy. The instability that we find has
been missed in some previous work where the perturbations were not consistently
treated. The unstable mode dominates even if adiabatic initial conditions are
used. The instability also arises regardless of how weak the coupling is. This
non-adiabatic instability is different from previously discovered adiabatic
instabilities on small scales in the strong-coupling regime.Comment: 15 pages, 5 figures. New reference; published versio
Large-scale instability in interacting dark energy and dark matter fluids
If dark energy interacts with dark matter, this gives a new approach to the
coincidence problem. But interacting dark energy models can suffer from
pathologies. We consider the case where the dark energy is modelled as a fluid
with constant equation of state parameter w. Non-interacting constant-w models
are well behaved in the background and in the perturbed universe. But the
combination of constant w and a simple interaction with dark matter leads to an
instability in the dark sector perturbations at early times: the curvature
perturbation blows up on super-Hubble scales. Our results underline how
important it is to carefully analyze the relativistic perturbations when
considering models of coupled dark energy. The instability that we find has
been missed in some previous work where the perturbations were not consistently
treated. The unstable mode dominates even if adiabatic initial conditions are
used. The instability also arises regardless of how weak the coupling is. This
non-adiabatic instability is different from previously discovered adiabatic
instabilities on small scales in the strong-coupling regime.Comment: 15 pages, 5 figures. New reference; published versio