560 research outputs found

    Study of systematics effects on the Cross Power Spectrum of 21 cm Line and Cosmic Microwave Background using Murchison Widefield Array Data

    Get PDF
    Observation of the 21cm line signal from neutral hydrogen during the Epoch of Reionization is challenging due to extremely bright Galactic and extragalactic foregrounds and complicated instrumental calibration. A reasonable approach for mitigating these problems is the cross correlation with other observables. In this work, we present the first results of the cross power spectrum (CPS) between radio images observed by the Murchison Widefield Array and the cosmic microwave background (CMB), measured by the Planck experiment. We study the systematics due to the ionospheric activity, the dependence of CPS on group of pointings, and frequency. The resulting CPS is consistent with zero because the error is dominated by the foregrounds in the 21cm observation. Additionally, the variance of the signal indicates the presence of unexpected systematics error at small scales. Furthermore, we reduce the error by one order of magnitude with application of a foreground removal using a polynomial fitting method. Based on the results, we find that the detection of the 21cm-CMB CPS with the MWA Phase I requires more than 99.95% of the foreground signal removed, 2000 hours of deep observation and 50% of the sky fraction coverage.Comment: 15 pages, 16 figures, accepted to MNRA

    Lepton asymmetry in the primordial gravitational wave spectrum

    Get PDF
    Effects of neutrino free streaming is evaluated on the primordial spectrum of gravitational radiation taking both neutrino chemical potential and masses into account. The former or the lepton asymmetry induces two competitive effects, namely, to increase anisotropic pressure, which damps the gravitational wave more, and to delay the matter-radiation equality time, which reduces the damping. The latter effect is more prominent and a large lepton asymmetry would reduce the damping. We may thereby be able to measure the magnitude of lepton asymmetry from the primordial gravitational wave spectrum.Comment: 14 pages, 5 figure

    THE KINEMATIC ANALYSIS OF THE LUMBAR, LUMBOSACRAL, AND HIP JOINTS IN THE DOLPHIN KICK SWIMMING

    Get PDF
    INTRODUCTION: The dolphin kick movement is commonly used in swimming. The low back pain (LBP) while using the dolphin kick motion is complained by many swimmers and that greatly influences their performance. Cailliet (1968) stated that LBP is caused by kinematic problems in the lumbar, the hip joint and the pelvis. Thus, the kinematic analysis that was included includes the pelvis, the hip joint as well as the lumber vertebrae was necessary for the prevention of the LBP. However, underwater analysis of the dolphin kick was not enough to explain the injury mechanism. Therefore the purpose of this study was the kinematic analysis of the lumbar, the lumbosacral, and the hip joints in the dolphin kick

    Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields

    Full text link
    We study generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We perform a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic fields. We find that magnetic fields with amplitude 1014101710^{-14}-10^{-17} G are generated inside the bubble, though the amount of magnetic fields generated depend on specific values of initial conditions. This corresponds to magnetic fields of 1028103110^{28}-10^{31} erg per each supernova remnant, which is strong enough to be the seed magnetic field for galactic and/or interstellar dynamo.Comment: 12 pages, 3 figure

    Phase transitions driven by L\'evy stable noise: exact solutions and stability analysis of nonlinear fractional Fokker-Planck equations

    Full text link
    Phase transitions and effects of external noise on many body systems are one of the main topics in physics. In mean field coupled nonlinear dynamical stochastic systems driven by Brownian noise, various types of phase transitions including nonequilibrium ones may appear. A Brownian motion is a special case of L\'evy motion and the stochastic process based on the latter is an alternative choice for studying cooperative phenomena in various fields. Recently, fractional Fokker-Planck equations associated with L\'evy noise have attracted much attention and behaviors of systems with double-well potential subjected to L\'evy noise have been studied intensively. However, most of such studies have resorted to numerical computation. We construct an {\it analytically solvable model} to study the occurrence of phase transitions driven by L\'evy stable noise.Comment: submitted to EP

    Steady state properties of a driven granular medium

    Full text link
    We study a two-dimensional granular system where external driving force is applied to each particle in the system in such a way that the system is driven into a steady state by balancing the energy input and the dissipation due to inelastic collision between particles. The velocities of the particles in the steady state satisfy the Maxwellian distribution. We measure the density-density correlation and the velocity-velocity correlation functions in the steady state and find that they are of power-law scaling forms. The locations of collision events are observed to be time-correlated and such a correlation is described by another power-law form. We also find that the dissipated energy obeys a power-law distribution. These results indicate that the system evolves into a critical state where there are neither characteristic spatial nor temporal scales in the correlation functions. A test particle exhibits an anomalous diffusion which is apparently similar to the Richardson law in a three-dimensional turbulent flow.Comment: REVTEX, submitted to Phys. Rev.

    Hydrodynamic Description of Granular Convection

    Full text link
    We present a hydrodynamic model that captures the essence of granular dynamics in a vibrating bed. We carry out the linear stability analysis and uncover the instability mechanism that leads to the appearance of the convective rolls via a supercritical bifurcation of a bouncing solution. We also explicitly determine the onset of convection as a function of control parameters and confirm our picture by numerical simulations of the continuum equations.Comment: 14 pages, RevTex 11pages + 3 pages figures (Type csh

    Primordial magnetic fields generated by the non-adiabatic fluctuations at pre-recombination era

    Full text link
    In the pre-recombination era, cosmological density fluctuations can naturally generate magnetic fields through Thomson scatterings. In previous studies, only the magnetic field generation from the initially-adiabatic fluctuations has been considered. Here we investigate the generation of cosmological magnetic fields sourced by the primordial non-adiabatic fluctuations based on the cosmological perturbation theory, using the tight-coupling approximations between photon and baryon fluids. It is found that the magnetic fields from the non-adiabatic fluctuations can arise at the first-order expansion of the tight coupling approximation. This result is in contrast to the case of adiabatic initial fluctuations, where the magnetic fields can be generated only at the second-order. In a general case where the primordial density perturbations contain small non-adiabatic fluctuations on the top of the dominant adiabatic ones, we show that the leading source of magnetic fields is given by the second-order coupling of the adiabatic and non-adiabatic fluctuations. We calculate the power spectrum of the generated magnetic fields when the non-adiabatic fluctuations have a blue power spectrum, which has been suggested by recent cosmological observations.Comment: 16 pages, 2 figures, minor corrections, references added, to be published in JCA
    corecore