7 research outputs found

    Foreseeing Neutrino spectra in Deep Core

    Full text link
    Atmospheric muon neutrino in Deep Core (whose rate and spectra might be soon available) should exhibit a suppression (due to tens GeV up-going muon neutrino converted into tau flavor) that must be imprinted in out-coming rate spectra. We estimate here our independent muon neutrino spectra based on SK and its projected record on Deep Core Channels. Our estimate (based on cosmic rays, muon records and tested Super-Kamiokande (SK) data) differs both in shape and in rate from other previous published spectra. The expected rate might exhibit a minimum near channel 6 of Deep Core strings and it should manifest strong signature for flavor mixing (mostly between channel 4--15)and a relevant anomaly for eventual CPT violation (MINOS like) written at channel 3--6,whose statistical weight (mainly at channel 5) might soon confirm or dismiss MINOS CPT claim. At the flux minimum around channel 6, (a flux suppressed respect the non oscillated case at least by an order of magnitude) the atmospheric neutrino paucity offers a better windows to a twenty GeV Neutrino Astronomy. Therefore by doubling the string array we may foresee a richer rate and a more complete (zenith and azimuth) atmospheric neutrino distribution and an exciting first twenty GeV Astronomy.Comment: 8 pages, 8 figure

    Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory

    No full text
    The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by the Fermi Gamma-ray Burst Monitor (Fermi-GBM), and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory (INTEGRAL), indicating particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the GeV-EeV energy range using the ANTARES, IceCube, and Pierre Auger Observatories. No neutrinos directionally coincident with the source were detected within +/- 500 s around the merger time. Additionally, no MeV neutrino burst signal was detected coincident with the merger. We further carried out an extended search in the direction of the source for high-energy neutrinos within the 14 day period following the merger, but found no evidence of emission. We used these results to probe dissipation mechanisms in relativistic outflows driven by the binary neutron star merger. The non-detection is consistent with model predictions of short GRBs observed at a large off-axis angle

    Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube

    No full text
    The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2 x 10(51)-2 x 10(54) erg
    corecore