11,558 research outputs found

    Holder-extendible European option: corrections and extensions

    Full text link
    Financial contracts with options that allow the holder to extend the contract maturity by paying an additional fixed amount found many applications in finance. Closed-form solutions for the price of these options have appeared in the literature for the case when the contract underlying asset follows a geometric Brownian motion with the constant interest rate, volatility, and non-negative "dividend" yield. In this paper, the option price is derived for the case of the underlying asset that follows a geometric Brownian motion with the time-dependent drift and volatility which is important to use the solutions in real life applications. The formulas are derived for the drift that may include non-negative or negative "dividend" yield. The latter case results in a new solution type that has not been studied in the literature. Several typographical errors in the formula for the holder-extendible put, typically repeated in textbooks and software, are corrected

    Influence of the sample geometry on the vortex matter in superconducting microstructures

    Full text link
    The dependence of the vortex penetration and expulsion on the geometry of mesoscopic superconductors is reported. Hall magnetometry measurements were performed on a superconducting Al square and triangle. The stability of the vortex patterns imposed by the sample geometry is discussed. The field-temperature HTH-T diagram has been reconstructed showing the transitions between states with different vorticity. We have found that the vortex penetration is only weakly affected by the vortex configuration inside the sample while the expulsion is strongly controlled by the stability of the vortex patterns. A qualitative explanation for this observation is given.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.

    Resonant Relaxation in Electroweak Baryogenesis

    Get PDF
    We compute the leading, chiral charge-changing relaxation term in the quantum transport equations that govern electroweak baryogenesis using the closed time path formulation of non-equilibrium quantum field theory. We show that the relaxation transport coefficients may be resonantly enhanced under appropriate conditions on electroweak model parameters and that such enhancements can mitigate the impact of similar enhancements in the CP-violating source terms. We also develop a power counting in the time and energy scales entering electroweak baryogenesis and include effects through second order in ratios ϵ\epsilon of the small and large scales. We illustrate the implications of the resonantly enhanced O(ϵ2){\cal O}(\epsilon^2) terms using the Minimal Supersymmetric Standard Model, focusing on the interplay between the requirements of baryogenesis and constraints obtained from collider studies, precision electroweak data, and electric dipole moment searches.Comment: 30 pages plus appendices, 7 figure

    CP-odd Phase Correlations and Electric Dipole Moments

    Full text link
    We revisit the constraints imposed by electric dipole moments (EDMs) of nucleons and heavy atoms on new CP-violating sources within supersymmetric theories. We point out that certain two-loop renormalization group corrections induce significant mixing between the basis-invariant CP-odd phases. In the framework of the constrained minimal supersymmetric standard model (CMSSM), the CP-odd invariant related to the soft trilinear A-phase at the GUT scale, theta_A, induces non-trivial and distinct CP-odd phases for the three gaugino masses at the weak scale. The latter give one-loop contributions to EDMs enhanced by tan beta, and can provide the dominant contribution to the electron EDM induced by theta_A. We perform a detailed analysis of the EDM constraints within the CMSSM, exhibiting the reach, in terms of sparticle spectra, which may be obtained assuming generic phases, as well as the limits on the CP-odd phases for some specific parameter points where detailed phenomenological studies are available. We also illustrate how this reach will expand with results from the next generation of experiments which are currently in development.Comment: 31 pages, 21 eps figures; v2: additional remarks on 2-loop threshold corrections and references added; v3: typos corrected, to appear in Phys. Rev.

    Is Sustainable Development of Deserts Feasible?

    Get PDF
    Hot deserts that presently cover about one-fifth of the land area of our planet are rapidly devouring more and more arable lands mostly due to anthropogenic causes. We propose an interdisciplinary approach to revitalizing and commercializing hot deserts, which is based on systems thinking and Russian and NASA space technology experience in designing life-support systems for long-duration flights. We formulate ten principles for the design of sustainable life support systems in deserts, which can make the development of the deserts feasible. It is discussed how the principles can be employed to design and operate desert’s eco-industrial parks with greenhouses in which the transpired and evaporated moisture is collected and condensed. The potential benefits of setting up the eco-industrial parks in deserts include the slowdown and eventual reversal of the desertification trend, the migration of many industrial production facilities from mild-climate regions to deserts, the increased availability of potable water and food in deserts, the development of poor African countries, and the emergence of new investment markets

    s-Channel Production of MSSM Higgs Bosons at a Muon Collider with Explicit CP Violation

    Get PDF
    A muon collider with controllable energy resolution and transverse beam polarization provides a powerful probe of the Higgs sector in the minimal supersymmetric standard model with explicit CP violation, through s-channel production of Higgs bosons. The production rates and the CP-even and CP-odd transverse-polarization asymmetries are complementary in diagnosing CP violation in the Higgs sector.Comment: 12 pages, 5 figures. Some statements for clarity and references added. To appear in Phys. Rev.

    Surface Electronic Structures and Field Emission Currents at Sodium Overlayers on Low-Index Tungsten Surfaces

    Full text link
    The total energy distributions (TEDs) of the emission currents in field emission and surface photofield emission and the overlayer-induced modifications in the surface electronic structures from the technologically important W surfaces with the commensurate W(100)/Na c(2x2), W(110)/Na (2x2) and W(111)/Na (1x1) overlayers are calculated. The TEDs obtained by our recent numerical method that extends the full-potential linear augmented plane wave method for the electronic structures to the study of field and photofield emission are used to interpret the shifts of the peaks in the experimental TEDs in field emission and photofield emission from the W(100) and W(110) surfaces at sub-monolayer and monolayer Na coverage. Hybridization of the 3s Na states with the pairs of dz2-like surface states of the strong Swanson hump in clean W(100) and surface resonances in clean W(111) below the Fermi energy shifts these W states by about -1.2 eV and -1.0 eV, thus stabilizing these states, to yield new strong peaks in the TEDs in field emission and photofield emission from W(100)/Na c(2x2) and W(111)/Na (1x1) respectively. The effect of Na intralayer interactions are discussed and are shown to shift the strong s- and p-like peaks in the surface density of states of W(110) below and above the Fermi energy respectively to lower energy with increased Na coverage, in agreement with experiments.Comment: 12 page

    Smith predictor with sliding mode control for processes with large dead times

    Get PDF
    The paper discusses the Smith Predictor scheme with Sliding Mode Controller (SP-SMC) for processes with large dead times. This technique gives improved load-disturbance rejection with optimum input control signal variations. A power rate reaching law is incorporated in the sporadic part of sliding mode control such that the overall performance recovers meaningfully. The proposed scheme obtains parameter values by satisfying a new performance index which is based on biobjective constraint. In simulation study, the efficiency of the method is evaluated for robustness and transient performance over reported technique

    On the EDM Cancellations in D-brane models

    Get PDF
    We analyze the possibility of simultaneous electron, neutron, and mercury electric dipole moment (EDM) cancellations in the mSUGRA and D--brane models. We find that the mercury EDM constraint practically rules out the cancellation scenario in D-brane models whereas in the context of mSUGRA it is still allowed with some fine-tuning.Comment: 10 pages, to appear in Phys. Rev. Let
    corecore