25 research outputs found

    Antioxidant Potential of Spirulina platensis

    Get PDF
    The present study aimed to examine the protective role of Spirulina platensis (S. platensis) against arsenic-induced testicular oxidative damage in rats. Arsenic (in the form of NaAsO2 at a dose of 6.3 mg/kg body weight for 8 weeks) caused a significant accumulation of arsenic in testicular tissues as well as a decrease in the levels of testicular superoxide dismutase (SOD), catalase (CAT), reduced glutathione, and zinc. Moreover, it significantly decreased plasma testosterone, luteinizing hormone (LH), triiodothyronine (T3), and thyroxine (T4) levels and reduced sperm motility and sperm count. Arsenic (AS) led to a significant increase in testicular malondialdehyde (MDA), tumour necrosis factor alpha (TNF-α), nitric oxide (NO), and sperm abnormalities. S. platensis at a dose of 300 mg/kg was found to attenuate As-induced oxidative stress, testicular damage, and sperm abnormalities by its potent antioxidant activity. S. platensis may represent a potential therapeutic option to protect the testicular tissue from arsenic intoxication

    The Alleviative Effect of Vitamin B2 on Potassium Bromate-Induced Hepatotoxicity in Male Rats

    No full text
    Potassium bromate (PB) is a food enhancer, water disinfection by-product, and a proven carcinogen. It elicits toxicities in the living organism due to exposure and in a dose-dependent manner. The present study discourses the ameliorative efficacy of riboflavin (RF) in PB-administered rodents. The animals were distributed into five treatment groups: control (group I), PB alone (group II, 150 mg/kg), RF alone (group III, 2 mg/kg), PB+RF1 (group IV, 150 mg/kg+2 mg/kg), and PB+RF2 (group V, 150 mg/kg+4 mg/kg). After the round of the treatment, the animals were sacrificed to collect their blood and liver samples for the detailed analysis. Group II depicted perturbed liver functions evidenced by altered serum and toxicity markers along with the disturbed redox balance. Also, these biochemical results were found harmonious with histopathological analysis and comet assay. However, group III showed no noticeable alteration in the same parameters, whereas the combination groups (IV and V) exhibited dose-dependent amelioration in the PB-induced toxicities. Interestingly, RF favored apoptosis concomitant with suppressing the necrosis in the PB-challenged groups, as shown by the activity of caspase-3 and lactate dehydrogenase. Histopathological analysis and comet assay further consolidate these results. Hence, RF has significant alleviative property against PB-induced hepatotoxicity in vivo that can be used in the consumer items containing the toxicant

    Disulfiram Enhances the Antineoplastic Activity and Sensitivity of Murine Hepatocellular Carcinoma to 5-FU via Redox Management

    No full text
    The efficacy of anticancer drug 5-FU is suppressed due to various factors, including severe side effects and decreased insensitivity during prolonged chemotherapy. Elevated endogenous copper (Cu) levels are one of the prominent hallmark features of cancer cells. In the present investigation, this feature was targeted in diethyl nitrosamine-phenobarbital-induced hepatocellular carcinoma (HCC) in a rat model system by an established anticancer drug, 5-FU, co-administered with copper and its chelating agent, disulfiram. After treatment with the test chemicals in HCC-induced rats, blood and liver samples were subjected to biochemical, molecular, and histopathological analyses. The analysis revealed that reactive oxygen species-mediated oxidative stress is the crucial etiological reason for the pathogenesis of HCC in rats, as evidenced by the significantly compromised activity of major antioxidant enzymes and elevated levels of oxidative damaged products with major histological alterations compared to the control. However, the combination of 5-FU with DSF demonstrated a significant improvement in most of the parameters, followed by 5-FU-Cu in the combination-treated groups. The combination treatment improved the histological details and triggered apoptosis in the cancer cells to a remarkable extent, as the levels of cleaved PARP and caspase-3 were significantly higher than those in the HCC rats treated with the drug alone. The present study envisages that manipulating the Cu-level greatly enhances the antineoplastic activity of 5-FU and sensitizes cancer cells to the increased efficacy of the drug

    Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats

    Get PDF
    <p>Abstract</p> <p>This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4)-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1), interferon gamma (IFN-γ), programmed cell death-receptor (Fas) and Tumor necrosis factor-alpha (TNF-α) mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA), cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH) and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals.</p

    Protective effect of gallic acid against thioacetamide-induced metabolic dysfunction of lipids in hepatic and renal toxicity

    No full text
    Background: Gallic acid (GA) has significant antioxidant bioactivity and can prevent diet-induced hypertriglyceridemia by reducing adipocytes. GA was also observed to enhance cell glucose uptake. Methods: The current study looked at the effect of gallic acid (GA) (100 mg, 200 mg/kg orally) on liver and kidney damage caused by thioacetamide (TAA; 100 mg/Kg via intraperitoneal route). TAA was treated thrice weekly for eight weeks, whereas gallic acid was administered daily. Results: GA alleviated the thioacetamide-induced decreases in hepatic or renal reduced glutathione (GSH) or increases in malondialdehyde (MDA, an indication of lipid peroxidation). TAA treatment significantly increased plasma inflammatory markers, tumor necrosis factor-alpha (TNF-α) and C-reactive protein (CRP), liver enzymes, Gamma-glutamyltransferase (GGT), Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), alkaline phosphatase (ALP), and kidney function parameters (creatinine and urea) and uric acid. However, these values decreased after GA treatment in a dose-dependent manner. Furthermore, GA mitigated the considerable decrease in plasma protein caused by TAA. GA also reduced hepatic fibrosis or histological abnormalities in the liver and kidney. Conclusion: Our results suggest that GA may attenuate TAA-induced liver and kidney toxicity via suppression of oxidative stress and inflammatory markers. Moreover, the hypolipidemic effect of GA may be considered another route for protection

    Diabetes-Mediated Toxicity Resulted in the Expression of CD80 and CD86 on Neutrophils after Delayed Wound Healing in Male Rats

    No full text
    Background. Polymorphonuclear neutrophils (PMNs) play an essential role in the innate immune response, and their number increases after prolonged inflammatory diabetic wounds and prolonged wounds in older rats. The expression of CD80 and CD86 on PMNs confirms their participation in acquired immunity, wherein these molecules are involved in antigen presentation. Materials and Methods. We investigated CD80 and CD86 expression on PMNs by flow cytometry and analyzed the mRNA expression of neutrophil chemoattractants macrophage inflammatory protein-2 (MIP-2) and MIP-1α by real-time polymerase chain reaction (PCR) in diabetic wound, which was healed by a camel milk peptide (CMP). The animals were allocated to the following wounded groups: control, diabetic (DM), and diabetic treated with CMP (DM-CMP). Results. Alkaline phosphatase, gamma-glutamyl transpeptidase, and lactate dehydrogenase levels were elevated in DM rats but decreased in peptide-treated rats. The expression of CD80 and CD86 was significantly higher in DM rats with prolonged wounds than in control rats. The expression of both markers was restored to normal levels in diabetic rats treated with CMP. RT-PCR analysis revealed the upregulation in MIP-2 mRNA expression in DM rats. However, neutrophil number at wounded sites of DM rats declined at day 1 after wounding as compared to that in control rats. MIP-2 mRNA expression and neutrophil number were restored in CMP-treated diabetic rats. Conclusion. Prolonged wound stress induced toxicity in DM rats and significantly increased the expression of CD80 and CD86 on PMNs. CMP peptide ameliorated the levels of toxicity markers, CD80 and CD86, and chemoattractant molecules in diabetic rats

    Comparative efficacy of ternary Cu (II) complex and Zn (II)-complex in amelioration of carbon tetrachloride-induced hepatotoxicity in vivo

    No full text
    Cu (II) and Zn (II) are two of the most favored metals in synthesis chemistry, encompassing their therapeutic potentials. The present study aims to evaluate the comparative ameliorative potential of a group B carcinogen, CCl4-induced hepatotoxicity, by our recently synthesized and characterized ternary Cu and Zn-based complexes in vivo. Three groups of rats were treated with CCl4 alone and with the combination of Cu (II) complex and Zn (II) complex beside the control negative group without any treatment. After completion of the treatment, the samples were subjected to biochemical and histological analysis. The analysis demonstrated extensive alteration in redox status, liver markers, and hepatotoxicity markers in the CCl4, treated group compared to the control group. However, the Cu (II) complex showed significant improvement in most of the parameters under the study. Also, histopathological evaluation and comet assay further consolidated the findings. Hence, this investigation reveals that Cu (II) complex has more substantial ameliorative potential in ceasing CCl4-induced hepatotoxic insults. Therefore, the ternary Cu (II) complex act as a more potent chemotherapeutic agent in cancer treatment with milder side effects than the Zn (II) complex

    Antidiabetic Potency, Antioxidant Effects, and Mode of Actions of Citrus reticulata Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin in Nicotinamide/Streptozotocin-Induced Wistar Diabetic Rats

    No full text
    This study is aimed at assessing the antihyperglycemic, antihyperlipidemic, and antioxidant effects of Citrus reticulata (C. reticulata) fruit peel hydroethanolic extract and two flavonoids, hesperidin and quercetin, in nicotinamide (NA)/streptozotocin- (STZ-) induced type 2 diabetic rats. In addition, GC-MS and HPLC-MS analyses of the extract were performed and the results indicated the presence of multiple flavonoids including hesperidin, quercetin, naringin, and polymethoxylated flavones (nobiletin and tangeretin). To achieve the aim of the study, diabetic rats with NA/STZ-induced T2DM were orally treated with C. reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin at a dose of 100 mg/kg b.w./day for four weeks. The treatments with C. reticulata fruit peel extract, hesperidin, and quercetin significantly ameliorated the impaired oral glucose tolerance; the elevated serum fructosamine level; the diminished serum insulin and C-peptide levels; the altered HOMA-IR, HOMA-IS, and HOMA-β cell function; the decreased liver glycogen content; the increased liver glucose-6-phosphatase and glycogen phosphorylase activities; the deleteriously affected serum lipid profile; the elevated serum AST and ALT activities; and the raised serum creatinine and urea levels in the diabetic rats. The treatments also produced remarkable improvement in the antioxidant defense system manifested by a decrease in the elevated liver lipid peroxidation and an increase in the lowered glutathione content and GPx, GST, and SOD activities. Furthermore, the three treatments enhanced the mRNA expression of GLUT-4 and the insulin receptor β-subunit, but only quercetin produced a significant increase in the expression of adiponectin in adipose tissue of diabetic rats. In conclusion, C. reticulata fruit peel hydroethanolic extract, hesperidin, and quercetin have potent antidiabetic effects which may be mediated through their insulinotropic effects and insulin-sensitizing actions. In addition, the alleviation of the antioxidant defense system by the extract, hesperidin, and naringin may have an important action to enhance the antidiabetic actions and to improve liver and kidney functions in NA/STZ-induced diabetic rats

    Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    No full text
    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy
    corecore