6,404 research outputs found

    One-loop Neutron Electric Dipole Moment from Supersymmetry without R-parity

    Get PDF
    We present a detailed analysis together with exact numerical calculations on one-loop contributions to neutron electric dipole moment from supersymmetry without R-parity, focusing on the gluino, chargino, and neutralino contributions. Apart from the neglected family mixing among quarks, complete formulae are given for the various contributions, through the quark dipole operators, to which the present study is restricted. We discuss the structure and main features of the R-parity violating contributions and the interplay between the R-parity conserving and violating parameters. In particular, the parameter combination ÎŒi∗λi11â€Č\mu_i^*\lambda^{\prime}_{i11}, under the optimal parametrization adopted, is shown to be solely responsible for the R-parity violating contributions in the supersymmetric loop diagrams. While ÎŒi∗λi11â€Č\mu_i^*\lambda^{\prime}_{i11} could bear a complex phase, the latter is not necessary to have a R-parity violating contribution.Comment: 43 pages Revtex with 15 eps- and 4 ps- figure files incoporated; proofread version to be published in Phys. Rev.

    On the EDM Cancellations in D-brane models

    Get PDF
    We analyze the possibility of simultaneous electron, neutron, and mercury electric dipole moment (EDM) cancellations in the mSUGRA and D--brane models. We find that the mercury EDM constraint practically rules out the cancellation scenario in D-brane models whereas in the context of mSUGRA it is still allowed with some fine-tuning.Comment: 10 pages, to appear in Phys. Rev. Let

    Effects of CP Violation on Event Rates in the Direct Detection of Dark Matter

    Full text link
    A full analytic analysis of the effects of CP violating phases on the event rates in the direct detection of dark matter in the scattering of neutralinos from nuclear targets is given. The analysis includes CP violating phases in softly broken supersymmetry in the framework of the minimal supersymmetric standard model (MSSM) when generational mixings are ignored. A numerical analysis shows that large CP violating phases including the constraints from the experimental limits on the neutron and the electron electric dipole moment (EDM) can produce substantial effects on the event rates in dark matter detectors.Comment: 17 pages, LaTex, including 2 figures; revised version to appear in the Physical Review

    Electron and Neutron Electric Dipole Moments in the Focus Point Scenario of SUGRA Model

    Get PDF
    We estimate the electron and neutron electric dipole moments in the focus point scenario of the minimal SUGRA model corresponding to large sfermion masses and moderate to large tan⁥ÎČ\tan\beta. There is a viable region of moderate fine-tuning in the parameter space, around tan⁥ÎČ≃5\tan\beta \simeq 5, where the experimental limits on these electric dipole moments can be satisfied without assuming unnaturally small phase angles. But the fine-tuning constraints become more severe for tan⁥ÎČ>10\tan\beta > 10.Comment: 16 pages, LaTeX, 4 postscript figures. Very minor changes made in only a few sentences for clarification. Final version to appear in Phys. Rev.

    CP Violation and Dark Matter

    Get PDF
    A brief review is given of the effects of CP violation on the direct detection of neutralinos in dark matter detectors. We first summarize the current developments using the cancellation mechanism which allows for the existence of large CP violating phases consistent with experimental limits on the electron and on the neutron electric dipole moments in a broad class of SUSY, string and D brane models. We then discuss their effects on the scattering of neutralinos from quarks and on the event rates. It is found that while CP effects on the event rates can be enormous such effects are reduced significantly with the imposition of the EDM constraints. However, even with the inclusion of the EDM constraints the effects are still very significant and should be included in a precision prediction of event rates in any SUSY, string or D brane model.Comment: Based on an invited talk at the conference "Sources and Detection of Dark Matter in the Universe", at Marina del Rey, CA, Feb. 23-25, 2000; 12 pages, Latex including 2 figure

    A Resolution to the Supersymmetric CP Problem with Large Soft Phases via D-branes

    Full text link
    We examine the soft supersymmetry breaking parameters that result from various ways of embedding the Standard Model (SM) on D-branes within the Type I string picture, allowing the gaugino masses and Ό\mu to have large CP- violating phases. One embedding naturally provides the relations among soft parameters to satisfy the electron and neutron electric dipole moment constraints even with large phases, while with other embeddings large phases are not allowed. The string models provide some motivation for large phases in the soft breaking parameters. The results generally suggest how low energy data might teach us about Planck scale physics.Comment: 11 pages, 2 eps figures; revised references and updated tex

    Mixing of the CP Even and the CP Odd Higgs Bosons and the EDM Constraints

    Get PDF
    The mixing among the CP even and the CP odd neutral Higgs bosons of MSSM by one loop induced effects in the presence of CP phases is investigated using three different mechanisms to satisfy the EDM constraints, i.e., a fine tuning of phases, a heavy sparticle spectrum, and the cancellation mechanism. It is shown that if a mixing effect among the CP even and the CP odd Higgs bosons is observed experimentally, then it is only the cancellation mechanism that can survive under the naturalness constraint.Comment: 14 pages, Latex and 4figures. A new paragraph is added and few more references. One figure is modified. To appear in Phys. Rev.

    Probing SUSY-induced CP violations at B factories

    Get PDF
    In the minimal supersymmetric standard model (MSSM), the \mu-parameter and the trilinear coupling A_t may be generically complex and can affect various observables at B factories. Imposing the edm constraints, we find that there is no new large phase shift in the B^0 - \bar{B^0} mixing, CP violating dilepton asymmetry is smaller than 0.1 %, and the direct CP violation in B\to X_s \gamma can be as large as \sim \pm 16 %.Comment: 4 pages, 2 figures. Version to appear in Phys. Rev. Let

    First-principles calculation of the temperature dependence of the optical response of bulk GaAs

    Full text link
    A novel approach has been developed to calculate the temperature dependence of the optical response of a semiconductor. The dielectric function is averaged over several thermally perturbed configurations that are extracted from molecular dynamic simulations. The calculated temperature dependence of the imaginary part of the dielectric function of GaAs is presented in the range from 0 to 700 K. This approach that explicitly takes into account lattice vibrations describes well the observed thermally-induced energy shifts and broadening of the dielectric function.Comment: 6 pages, 3 figure

    Anomalous relaxation and self-organization in non-equilibrium processes

    Full text link
    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find, that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anti-cooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration.Comment: submitted to PR
    • 

    corecore