23 research outputs found

    Characterization of a monoclonal antibody specific to a flavonol 2′-O-glucosyltransferase

    Get PDF
    A monoclonal antibody to a partially purified preparation of 2′-O-glucosyltransferase was produced by in vitro immunization of spleen cells from BALB/c mice, followed by fusion with mouse myeloma cells. Hybridoma culture supernatants were screened by enzyme-linked immunosorbent assay for (i) their ability to produce immunoglobulins and (ii) their immunoreactivity with a partially purified enzyme preparation. The majority of the immunoglobulin-producing hybridomas were IgM secretors. Two highly immunoreactive IgM-secreting clones were chosen for further characterization. The supernatant fraction from a culture of one of these clones displayed 50% inhibition of the 2′-O-glucosyltransferase activity. The native form of the 2′-O-glucosyltransferase was essential for recognition, suggesting that the epitope recognized by the antibody is a conformational discontiguous one

    Purification and kinetics of phenylpropanoid O-methyltransferase activities from Brassica oleracea

    Get PDF
    Two phenylpropanoid O-methyltransferase isoforms were purified to homogeneity from young cabbage leaves. They catalyzed the meta-O-methylation of caffeic and 5-hydroxyferulic acids to ferulic and sinapic acids, respectively. Both isoforms I and II exhibited different elution patterns from a Mono Q column, distinct apparent pIs on chromatofocusing, different product ratios, and stability on adenosine–agarose affinity column. On the other hand, both isoforms had similar apparent molecular masses (42 kilodaltons) and a pH optimum of 7.6. They exhibited no requirement for divalent cations and were both irreversibly inhibited by iodoacetate. Substrate interaction kinetics of the more stable isoform I, using the 5-hydroxyferulic acid and S-adenosyl-L-methionine, gave converging lines. Product inhibition studies showed competitive inhibition between S-adenosyl-L-methionine and S-adenosyl-L-homocysteine and non-competitive inhibition between the phenylpropanoid substrate and its methylated product. The kinetic patterns are consistent with an ordered bi bi mechanism, where S-adenosyl-L-methionine is the first substrate to bind and S-adenosyl-L-homocysteine is the last product released

    Structure-function relationships of wheat flavone O-methyltransferase: Homology modeling and site-directed mutagenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat (<it>Triticum aestivum </it>L.) <it>O</it>-methyltransferase (TaOMT2) catalyzes the sequential methylation of the flavone, tricetin, to its 3'-methyl- (selgin), 3',5'-dimethyl- (tricin) and 3',4',5'-trimethyl ether derivatives. Tricin, a potential multifunctional nutraceutical, is the major enzyme reaction product. These successive methylations raised the question as to whether they take place in one, or different active sites. We constructed a 3-D model of this protein using the crystal structure of the highly homologous <it>Medicago sativa </it>caffeic acid/5-hydroxyferulic acid <it>O</it>-methyltransferase (MsCOMT) as a template with the aim of proposing a mechanism for multiple methyl transfer reactions in wheat.</p> <p>Results</p> <p>This model revealed unique structural features of TaOMT2 which permit the stepwise methylation of tricetin. Substrate binding is mediated by an extensive network of H-bonds and van der Waals interactions. Mutational analysis of structurally guided active site residues identified those involved in binding and catalysis. The partly buried tricetin active site, as well as proximity and orientation effects ensured sequential methylation of the substrate within the same pocket. Stepwise methylation of tricetin involves deprotonation of its hydroxyl groups by a His262-Asp263 pair followed by nucleophilic attack of SAM-methyl groups. We also demonstrate that Val309, which is conserved in a number of graminaceous flavone OMTs, defines the preference of TaOMT2 for tricetin as the substrate.</p> <p>Conclusions</p> <p>We propose a mechanism for the sequential methylation of tricetin, and discuss the potential application of TaOMT2 to increase the production of tricin as a nutraceutical. The single amino acid residue in TaOMT2, Val309, determines its preference for tricetin as the substrate, and may define the evolutionary differences between the two closely related proteins, COMT and flavone OMT.</p

    A forty-year journey in plant research: original contributions to flavonoid biochemistry

    Get PDF
    This review highlights original contributions by the author to the field of flavonoid biochemistry during his research career of more than four decades. These include elucidation of novel aspects of some of the common enzymatic reactions involved in the later steps of flavonoid biosynthesis, with emphasis on methyltransferases, glucosyltransferases, sulfotransferases, and an oxoglutarate-dependent dioxygenase, as well as cloning, and inferences about phylogenetic relationships, of the genes encoding some of these enzymes. The three-dimensional structure of a flavonol O-methyltransferase was studied through homology-based modeling, using a caffeic acid O-methyltransferase as a template, to explain their strict substrate preferences. In addition, the biological significance of enzymatic prenylation of isoflavones, as well as their role as phytoanticipins and inducers of nodulation genes, are emphasized. Finally, the potential application of knowledge about the genes encoding these enzyme reactions is discussed in terms of improving plant productivity and survival, modification of flavonoid profiles, and the search for new compounds with pharmaceutical and (or) nutraceutical value

    Biosynthesis of some phenolic acids and lactones in higher plants using carbon-14.

    No full text
    One characteristic feature of higher plants is their ability to synthesize phenolic compounds in great variety and quantity. Lignin, which constitutes 20-30 % of the dry weight of plants, is formed of phenolic polymers. Phenolic compounds appear to be metabolically inert substances and are considered to be stable and characteristic end products in living plant tissues. No general function can be ascribed to these compounds and no explanation bas been given to their extraordinary diversity. This is possibly one of the reasons why little attention has been given to them by plant physiologists and biochemists in the past
    corecore