571 research outputs found
Identification, Characterization, and Localization of a Novel Kidney Polycystin-1-Polycystin-2 Complex
The functions of the two proteins defective in autosomal dominant polycystic kidney disease, polycystin-1 and polycystin-2, have not been fully clarified, but it has been hypothesized that they may heterodimerize to form a "polycystin complex" involved in cell adhesion. In this paper, we demonstrate for the first time the existence of a native polycystin complex in mouse kidney tubular cells transgenic for PKD1, non-transgenic kidney cells, and normal adult human kidney. Polycystin-1 is heavily N-glycosylated, and several glycosylated forms of polycystin-1 differing in their sensitivity to endoglycosidase H (Endo H) were found; in contrast, native polycystin-2 was fully Endo H-sensitive. Using highly specific antibodies to both proteins, we show that polycystin-2 associates selectively with two species of full-length polycystin-1, one Endo H-sensitive and the other Endo H-resistant; importantly, the latter could be further enriched in plasma membrane fractions and co-immunoprecipitated with polycystin-2. Finally, a subpopulation of this complex co-localized to the lateral cell borders of PKD1 transgenic kidney cells. These results demonstrate that polycystin-1 and polycystin-2 interact in vivo to form a stable heterodimeric complex and suggest that disruption of this complex is likely to be of primary relevance to the pathogenesis of cyst formation in autosomal dominant polycystic kidney disease
Transgenic Rescue of the LARGEmyd Mouse: A LARGE Therapeutic Window?
LARGE is a glycosyltransferase involved in glycosylation of α-dystroglycan (α-DG). Absence of this protein in the LARGEmyd mouse results in α-DG hypoglycosylation, and is associated with central nervous system abnormalities and progressive muscular dystrophy. Up-regulation of LARGE has previously been proposed as a therapy for the secondary dystroglycanopathies: overexpression in cells compensates for defects in multiple dystroglycanopathy genes. Counterintuitively, LARGE overexpression in an FKRP-deficient mouse exacerbates pathology, suggesting that modulation of α-DG glycosylation requires further investigation. Here we demonstrate that transgenic expression of human LARGE (LARGE-LV5) in the LARGEmyd mouse restores α-DG glycosylation (with marked hyperglycosylation in muscle) and that this corrects both the muscle pathology and brain architecture. By quantitative analyses of LARGE transcripts we also here show that levels of transgenic and endogenous LARGE in the brains of transgenic animals are comparable, but that the transgene is markedly overexpressed in heart and particularly skeletal muscle (20–100 fold over endogenous). Our data suggest LARGE overexpression may only be deleterious under a forced regenerative context, such as that resulting from a reduction in FKRP: in the absence of such a defect we show that systemic expression of LARGE can indeed act therapeutically, and that even dramatic LARGE overexpression is well-tolerated in heart and skeletal muscle. Moreover, correction of LARGEmyd brain pathology with only moderate, near-physiological LARGE expression suggests a generous therapeutic window
Fibroblast Growth Factor Signaling and Basement Membrane Assembly Are Connected during Epithelial Morphogenesis of the Embryoid Body
Fibroblast growth factors and receptors are intimately connected to the extracellular matrix by their affinity to heparan sulfate proteoglycans. They mediate multiple processes during embryonic development and adult life. In this study, embryonic stem cell–derived embryoid bodies were used to model fibroblast growth factor signaling during early epithelial morphogenesis. To avoid redundancy caused by multiple receptors, we employed a dominant negative mutation of Fgfr2. Mutant-derived embryoid bodies failed to form endoderm, ectoderm, and basement membrane and did not cavitate. However, in mixed cultures they displayed complete differentiation induced by extracellular products of the normal cell. Evidence will be presented here that at least one of these products is the basement membrane or factors connected to it. It will be shown that in the mutant, collagen IV and laminin-1 synthesis is coordinately suppressed. We will demonstrate that the basement membrane is required for embryoid body differentiation by rescuing columnar ectoderm differentiation and cavitation in the mutant by externally added basement membrane proteins. This treatment induced transcription of Eomesodermin, an early developmental gene, suggesting that purified basement membrane proteins can activate inherent developmental programs. Our results provide a new paradigm for the role of fibroblast growth factor signaling in basement membrane formation and epithelial differentiation
Effect of beta-Dystroglycan Processing on Utrophin / DP116 Anchorage in Normal and MDX Mouse Schwann Cell Membrane
In the peripheral nervous system, utrophin and the short dystrophin isoform
(Dp116) are co-localized at the outermost layer of the myelin sheath of nerve
fibers; together with the dystroglycan complex. In peripheral nerve, matrix
metalloproteinase (MMP) creates a 30 kDa fragment of beta-dystroglycan, leading
to a disruption of the link between the extracellular matrix and the cell
membrane. Here we asked if the processing of the beta-dystroglycan could
influence the anchorage of Dp116 or/and utrophin in normal and mdx Schwann cell
membrane. We showed that MMP-9 was more activated in mdx nerve than in
wild-type one. This activation leads to an accumulation of the 30 kDa
beta-dystroglycan isoform and have an impact on the anchorage of Dp116 and
utrophin isoforms in mdx Schwann cells membrane. Our results showed that Dp116
had greater affinity to the full length form of beta-dystroglycan than the 30
kDa form. Moreover, we showed for the first time that the short isoform of
utrophin (Up71) was over-expressed in mdx Schwann cells compared to wild-type.
In addition, this utrophin isoform (Up71) seems to have greater affinity to the
30 kDa beta-dystroglycan which could explain a more stabilization of this 30
kDa at the membrane compartment. Our results highlight the potential
participation of the short utrophin isoform and the cleaved form of
beta-dystroglycan in mdx Schwann cell membrane architecture
Muscle Dystroglycan Organizes the Postsynapse and Regulates Presynaptic Neurotransmitter Release at the Drosophila Neuromuscular Junction
International audienceBACKGROUND: The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, we focused on the synaptic role of Dystroglycan (Dg) in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We show that Dg was concentrated postsynaptically at the glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and Dystrophin homologues. We also found that synaptic Dg controlled the amount of postsynaptic 4.1 protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate receptors. In addition, both Dystrophin and Coracle were required for normal Dg concentration at the synapse. In electrophysiological recordings, loss of postsynaptic Dg did not affect postsynaptic response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site. CONCLUSION/SIGNIFICANCE: Altogether, our study illustrates a conservation of DGC composition and interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated with this complex and suggests an unsuspected trans-synaptic function of Dg
The Dystroglycan Complex Is Necessary for Stabilization of Acetylcholine Receptor Clusters at Neuromuscular Junctions and Formation of the Synaptic Basement Membrane
The dystrophin-associated protein (DAP) complex spans the sarcolemmal membrane linking the cytoskeleton to the basement membrane surrounding each myofiber. Defects in the DAP complex have been linked previously to a variety of muscular dystrophies. Other evidence points to a role for the DAP complex in formation of nerve–muscle synapses. We show that myotubes differentiated from dystroglycan−/− embryonic stem cells are responsive to agrin, but produce acetylcholine receptor (AChR) clusters which are two to three times larger in area, about half as dense, and significantly less stable than those on dystroglycan+/+ myotubes. AChRs at neuromuscular junctions are similarly affected in dystroglycan-deficient chimeric mice and there is a coordinate increase in nerve terminal size at these junctions. In culture and in vivo the absence of dystroglycan disrupts the localization to AChR clusters of laminin, perlecan, and acetylcholinesterase (AChE), but not rapsyn or agrin. Treatment of myotubes in culture with laminin induces AChR clusters on dystroglycan+/+, but not −/− myotubes. These results suggest that dystroglycan is essential for the assembly of a synaptic basement membrane, most notably by localizing AChE through its binding to perlecan. In addition, they suggest that dystroglycan functions in the organization and stabilization of AChR clusters, which appear to be mediated through its binding of laminin
Assembly of the Dystrophin-Associated Protein Complex Does Not Require the Dystrophin Cooh-Terminal Domain
Dystrophin is a multidomain protein that links the actin cytoskeleton to laminin in the extracellular matrix through the dystrophin associated protein (DAP) complex. The COOH-terminal domain of dystrophin binds to two components of the DAP complex, syntrophin and dystrobrevin. To understand the role of syntrophin and dystrobrevin, we previously generated a series of transgenic mouse lines expressing dystrophins with deletions throughout the COOH-terminal domain. Each of these mice had normal muscle function and displayed normal localization of syntrophin and dystrobrevin. Since syntrophin and dystrobrevin bind to each other as well as to dystrophin, we have now generated a transgenic mouse deleted for the entire dystrophin COOH-terminal domain. Unexpectedly, this truncated dystrophin supported normal muscle function and assembly of the DAP complex. These results demonstrate that syntrophin and dystrobrevin functionally associate with the DAP complex in the absence of a direct link to dystrophin. We also observed that the DAP complexes in these different transgenic mouse strains were not identical. Instead, the DAP complexes contained varying ratios of syntrophin and dystrobrevin isoforms. These results suggest that alternative splicing of the dystrophin gene, which naturally generates COOH-terminal deletions in dystrophin, may function to regulate the isoform composition of the DAP complex
Zebrafish models for human FKRP muscular dystrophies
Various muscular dystrophies are associated with the defective glycosylation of α-dystroglycan and are known to result from mutations in genes encoding glycosyltransferases. Fukutin-related protein (FKRP) was identified as a homolog of fukutin, the defective protein in Fukuyama-type congenital muscular dystrophy (FCMD), that is thought to function as a glycosyltransferase. Mutations in FKRP have been linked to a variety of phenotypes including Walker–Warburg syndrome (WWS), limb girdle muscular dystrophy (LGMD) 2I and congenital muscular dystrophy 1C (MDC1C). Zebrafish are a useful animal model to reveal the mechanism of these diseases caused by mutations in FKRP gene. Downregulating FKRP expression in zebrafish by two different morpholinos resulted in embryos which had developmental defects similar to those observed in human muscular dystrophies associated with mutations in FKRP. The FKRP morphants showed phenotypes involving alterations in somitic structure and muscle fiber organization, as well as defects in developing eye morphology. Additionally, they were found to have a reduction in α-dystroglycan glycosylation and a shortened myofiber length. Moreover, co-injection of fish or human FKRP mRNA along with the morpholino restored normal development, α-dystroglycan glycosylation and laminin binding activity of α-dystroglycan in the morphants. Co-injection of the human FKRP mRNA containing causative mutations found in human patients of WWS, MDC1C and LGMD2I could not restore their phenotypes significantly. Interestingly, these morphant fish having human FKRP mutations showed a wide phenotypic range similar to that seen in humans
Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus
β-Dystroglycan (β-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of β-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/β mediated nuclear import pathway has already been described for β-DG, the intracellular trafficking route by which β-DG reaches the nucleus is unknown. In this study, we demonstrated that β-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of β-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of β-DG at Tyr890 is a key stimulus for β-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that β-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE
- …