27 research outputs found
Electrostatic interactions in dissipative particle dynamics simulations of polymer brushes
Communication par afficheInternational audienc
Simulation de type mésoscopique de brosses de polymères avec calcul des charges électrostatiques
Communication oral
Molecular simulations of the n-alkane liquid-vapor interface : interfacial properties and their long range corrections
International audienc
Recommended from our members
Effect of salt on the compression of polyelectrolyte brushes in a theta solvent
Classical strong-stretching theory (SST) predicts that, as opposing polyelectrolyte brushes are compressed together in a salt-free theta solvent, they contract so as to maintain a finite polymer-free gap, which offers a potential explanation for the ultra-low frictional forces observed in experiments even with the application of large normal forces. However, the SST ignores chain fluctuations, which would tend to close the gap resulting in physical contact and in turn significant friction. In a preceding study, we examined the effect of fluctuations using self-consistent field theory (SCFT) and illustrated that high normal forces can still be applied before the gap is destroyed. We now look at the effect of adding salt. It is found to reduce the long-range interaction between the brushes but has little effect on the short-range part, provided the concentration does not enter the salted-brush regime. Consequently, the maximum normal force between two planar brushes at the point of contact is remarkably unaffected by salt. For the crossed-cylinder geometry commonly used in experiments, however, there is a gradual reduction because in this case the long-range part of the interaction contributes to the maximum normal force
Multiscale Modeling Approach toward the Prediction of Viscoelastic Properties of Polymers
International audienceWe report a multiscale modeling approach to study static and dynamical properties of polymer melts at large time and length scales. We use a bottom-up approach consisting of deriving coarse-grained models from an atomistic description of the polymer melt. We use the iterative Boltzmann inversion (IBI) procedure and a pressure-correction function to map the thermodynamic conditions of the atomistic configurations. The coarse-grained models are incorporated in the dissipative particle dynamics (DPD) method. The thermodynamic, structural, and dynamical properties of the cis-1,4-polybutadiene melt are very well reproduced by the coarse-grained DPD models with a significative computational gain. We complete this study by addressing the challenging question of the investigation of the shear modulus evolution. As expected from experiments, the stress correlation functions show behaviors that are dependent on the molecular weights defining unentangled and weakly entangled polymer melts