566 research outputs found

    Flat Higgs Potential from Planck Scale Supersymmetry Breaking

    Full text link
    The observed Higgs boson mass poses a new puzzle in addition to the longstanding problem of the origin of the electroweak scale; the shallowness of the Higgs potential. The Higgs quartic coupling even seems to vanish at around the Planck scale within the uncertainties of the top quark mass and the strong gauge coupling. We show that the shallowness of the Higgs potential might be an outcome of supersymmetry breaking at around the Planck scale. There, the electroweak fine-tuning in the Higgs quadratic terms leads to an almost vanishing quartic coupling at around the Planck scale.Comment: 4 pages, 2 figure

    Why three generations?

    Get PDF
    We discuss an anthropic explanation of why there exist three generations of fermions. If one assumes that the right-handed neutrino sector is responsible for both the matter-antimatter asymmetry and the dark matter, then anthropic selection favors three or more families of fermions. For successful leptogenesis, at least two right-handed neutrinos are needed, while the third right-handed neutrino is invoked to play the role of dark matter. The number of the right-handed neutrinos is tied to the number of generations by the anomaly constraints of the U(1)B−LU(1)_{B-L} gauge symmetry. Combining anthropic arguments with observational constraints, we obtain predictions for the XX-ray observations, as well as for neutrinoless double-beta decay.Comment: 7pages, 2 figure

    R-symmetric Axion/Natural Inflation in Supergravity via Deformed Moduli Dynamics

    Get PDF
    We construct a natural inflation model in supergravity where the inflaton is identified with a modulus field possessing a shift symmetry. The superpotential for the inflaton is generated by meson condensation due to strong dynamics with deformed moduli constraints. In contrast to models based on gaugino condensation, the inflaton potential is generated without RR-symmetry breaking and hence does not depend on the gravitino mass. Thus, our model is compatible with low scale supersymmetry.Comment: 15 page

    Minimal Supergravity, Inflation, and All That

    Get PDF
    We consider an inflationary model in the hidden-sector broken supergravity with an effectively large cutoff. The inflaton decay into right-handed neutrinos naturally causes the observed baryon asymmetry of the universe with a reheating temperature low enough to avoid the gravitino overproduction. We emphasize that all the phenomenological requirements from cosmology and particle physics are satisfied in the large-cutoff theory.Comment: 15pages, 4figures, text and refs. adde
    • …
    corecore