509 research outputs found
Telocytes in minor salivary glands of primary Sjogren’s syndrome: association with the extent of inflammation and ectopic lymphoid neogenesis
It has been recently reported that telocytes, a stromal (interstitial) cell subset involved in the control of local tissue homeostasis, are hampered in the target organs of inflammatory/autoimmune disorders. Since no data concerning telocytes in minor salivary glands (MSGs) are currently available, aim of the study was to evaluate telocyte distribution in MSGs with normal architecture, non-specific chronic sialadenitis (NSCS) and primary Sjögren’s syndrome (pSS)-focal lymphocytic sialadenitis. Twelve patients with pSS and 16 sicca non-pSS subjects were enrolled in the study. MSGs were evaluated by haematoxylin and eosin staining and immunofluorescence for CD3/CD20 and CD21 to assess focus score, Tarpley biopsy score, T/B cell segregation and germinal center (GC)-like structures. Telocytes were identified by immunoperoxidase-based immunohistochemistry for CD34 and CD34/platelet-derived growth factor receptor α double immunofluorescence. Telocytes were numerous in the stromal compartment of normal MSGs, where their long cytoplasmic processes surrounded vessels and encircled both the excretory ducts and the secretory units. In NSCS, despite the presence of a certain degree of inflammation, telocytes were normally represented. Conversely, telocytes were markedly reduced in MSGs from pSS patients compared to normal and NSCS MSGs. Such a decrease was associated with both worsening of glandular inflammation and progression of ectopic lymphoid neogenesis, periductal telocytes being reduced in the presence of smaller inflammatory foci and completely absent in the presence of GC-like structures. Our findings suggest that a loss of MSG telocytes might have important pathophysiological implications in pSS. The specific pro-inflammatory cytokine milieu of pSS MSGs might be one of the causes of telocyte loss
C to U Editing Stimulates A to I Editing in the Anticodon Loop of a Cytoplasmic Threonyl tRNA in Trypanosoma brucei
Editing of tRNAs is widespread in nature and either changes the decoding properties or restores the folding of a tRNA. Unlike the phylogenetically disperse adenosine (A) to inosine (I) editing, cytosine (C) to uridine (U) editing has only been previously described in organellar tRNAs. We have shown that cytoplasmic tRNAThr(AGU) undergoes two distinct editing events in the anticodon loop: C to U and A to I. In vivo, every inosine-containing tRNAThr is also C to U edited at position 32. In vitro, C to U editing stimulates conversion of A to I at the wobble base. Although the in vivo and in vitro requirements differ, in both cases, the C to U change plays a key role in A to I editing. Due to an unusual abundance of A34-containing tRNAs, our results also suggest that the unedited and edited tRNAs are functional, each dedicated to decoding a specific threonine codon. C to U editing of cytoplasmic tRNA expands the editing repertoire in eukaryotic cells, and when coupled to A to I changes, leads to an interrelation between editing sites
Topically administered hyaluronic acid in the upper airway: A narrative review
Hyaluronic acid plays a role in controlling inflammatory airway processes and mucociliary clearance, and it is also involved in tissue healing and remodelling. Some studies have tested the effectiveness of topically administered hyaluronic acid in patients with upper airway diseases with positive preliminary results. This article describes the use of topically administered hyaluronic acid in patients with otolaryngological disorders. Pertinent studies published between January 2000 and October 2016 were selected by means of a MEDLINE search using the following terms: \u2018hyaluronic acid\u2019 and \u2018otolaryngology\u2019, \u2018otitis\u2019, \u2018pharyngitis\u2019, \u2018tonsillitis\u2019, \u2018rhinitis\u2019, \u2018rhinosinusitis\u2019 and \u149ose\u2019. Twelve of the 19 initially identified papers were selected, corresponding to 902 patients as a whole. There is some evidence that topically administered hyaluronic acid is effective or moderately effective in different otolaryngological conditions, as it improves the global subjective and clinical status of patients with inflammation of the nasopharyngeal and oto-tubaric complex, those with rhinitis or rhinosinusitis and those who have undergone nasal and sinonasal surgery. However, these findings should be viewed cautiously as they are based on a limited number of studies, some of which were probably under-powered because of their small patient samples
Synthesis of Rhamnosylated Arginine Glycopeptides and Determination of the Glycosidic Linkage in Bacterial Elongation Factor P
A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies
Altered Immunoregulation in Rheumatoid Arthritis: The Role of Regulatory T Cells and Proinflammatory Th17 Cells and Therapeutic Implications
In recent years several studies investigated the role of T lymphocyte subpopulations in the pathogenesis of rheumatoid arthritis (RA). Pathogenic Th17 cells mediate pannus growth, osteoclastogenesis, and synovial neoangiogenesis; hence they are key players in the development of the disease. On the other hand, regulatory T (Treg) cells are a T cell subset whose peculiar function is to suppress autoreactive lymphocytes. The imbalance between Th17 and Treg cells has been identified as a crucial event in the pathogenesis of RA. In addition, the effects of currently employed RA therapeutic strategies on these lymphocyte subpopulations have been extensively investigated. This review article aims to discuss current knowledge on Treg and Th17 cells in RA and possible implications of their therapeutic targeting in this disorder
A two-step immunomagnetic microbead-based method for the isolation of human primary skin telocytes/CD34+ stromal cells
Telocytes (TCs), commonly referred to as TCs/CD34+ stromal cells, are a peculiar type of interstitial cells with distinctive morphologic traits that are supposed to exert several biological functions, including tissue homeostasis regulation, cell-to-cell signaling, immune surveillance, and reparative/regenerative effects. At present, the majority of studies investigating these cells are mainly descriptive and focus only on their morphology, with a consequent paucity of functional data. To gain relevant insight into the possible functions of TCs, in vitro analyses are clearly required, but currently, the protocols for TC isolation are only at the early stages and not fully standardized. In the present in vitro study, we describe a novel methodology for the purification of human primary skin TCs through a two-step immunomagnetic microbead-based cell separation (i.e., negative selection for CD31 followed by positive selection for CD34) capable of discriminating these cells from other connective tissue-resident cells on the basis of their different immunophenotypic features. Our experiments clearly demonstrated that the proposed method allows a selective purification of cells exhibiting the peculiar TC morphology. Isolated TCs displayed very long cytoplasmic extensions with a moniliform silhouette (telopodes) and presented an immunophenotypic profile (CD31−/CD34+/PDGFRα+/vimentin+) that unequivocally differentiates them from endothelial cells (CD31+/CD34+/PDGFRα−/vimentin+) and fibroblasts (CD31−/CD34−/PDGFRα+/vimentin+). This novel methodology for the isolation of TCs lays the groundwork for further research aimed at elucidating their functional properties and possible translational applications, especially in the field of regenerative medicine
Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression.
Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission
Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of \u3cem\u3eFARS2\u3c/em\u3e-linked Disease
Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins
- …