4 research outputs found

    Analysis Of Semi-Distributed And Global Hydrological Models In The Central Tropical Basins Of The Gulf Of Mexico To The Effects Of Extreme Hydrometeorological Phenomena

    Full text link
    In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I\u27Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization

    Using grey clustering to evaluate nitrogen pollution in estuaries with limited data

    Full text link
    [EN] Many techniques exist for the evaluation of nutrient pollution, but most of them require large amounts of data and are difficult to implement in countries where accurate water quality information is not available. New methods tomanage subjectivity, inaccuracy or variability are required in such environments so that watermanagers can invest the scarce economic resources available to restore themost vulnerable areas. We propose a new methodology based on grey clusteringwhich classifies monitoring sites according to their need for nitrogen pollution management when only small amounts of data are available. Grey clustering focuses on the extraction of information with small samples, allowing management decision making with limited data. We applied the entropy-weight method, based on the concept of information entropy, to determine the clustering weight of each criterion used for classification. In order to reference the pollution level to the anthropogenic pressure, we developed two grey indexes: the Grey Nitrogen Management Priority index (GNMP index) to evaluate the relative need for nitrogen pollution management based on a spatiotemporal analysis of total nitrogen concentrations, and the Grey Land Use Pollution index (GLUP index), which evaluates the anthropogenic pressures of nitrogen pollution based on land use. Both indexes were then confronted to validate the classification. We applied the developedmethodology to eight estuaries of the SouthernGulf ofMexico associated to beaches,mangroves and other coastal ecosystems which may be threatened by the presence of nitrogen pollution. The application of the new method has proved to be a powerful tool for decision making when data availability and reliability are limited. This method could also be applied to assess other pollutants.This work was supported by Erasmus Mundus -MAYANET Grant Agreement Number 2014-0872/001-001, funded with support of the European Commission, and an Excellence Scholarship awarded by the Mexican Government through the Mexican Agency for International Development Cooperation (AMEXCID). The Mexican National Water Commission provided the field data.Temino-Boes, R.; Romero-Lopez, R.; Ibarra-Zavaleta, SP.; Romero Gil, I. (2020). Using grey clustering to evaluate nitrogen pollution in estuaries with limited data. The Science of The Total Environment. 722:1-12. https://doi.org/10.1016/j.scitotenv.2020.137964S112722Adame, M. F., Najera, E., Lovelock, C. E., & Brown, C. J. (2018). Avoided emissions and conservation of scrub mangroves: potential for a Blue Carbon project in the Gulf of California, Mexico. Biology Letters, 14(12), 20180400. doi:10.1098/rsbl.2018.0400Adriaenssens, V., Baets, B. D., Goethals, P. L. M., & Pauw, N. D. (2004). Fuzzy rule-based models for decision support in ecosystem management. Science of The Total Environment, 319(1-3), 1-12. doi:10.1016/s0048-9697(03)00433-9Ali, T. A., Mortula, M., Atabay, S., & Navadeh, E. (2015). A GIS-based spatiotemporal study of the variability of water quality in the Dubai Creek, UAE. Water Quality Research Journal, 51(3), 219-232. doi:10.2166/wqrjc.2015.020Andersen, J. H., Axe, P., Backer, H., Carstensen, J., Claussen, U., Fleming-Lehtinen, V., … Villnäs, A. (2010). Getting the measure of eutrophication in the Baltic Sea: towards improved assessment principles and methods. Biogeochemistry, 106(2), 137-156. doi:10.1007/s10533-010-9508-4Anguiano-Cuevas, J. R., Olivos-Ortiz, A., Cervantes, O., Azuz-Adeath, I., Ramírez-Álvarez, N., & Rivera-Rodríguez, M. C. (2015). Evaluation of trophic state in the Palo Verde estuary (Colima, México), action to regulating agricultural activities. Revista de Gestão Costeira Integrada, 15(4), 507-522. doi:10.5894/rgci582Azarnivand, A. (2017). Comment on «Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method» by Wei Hou, Shaohua Sun, Mingquan Wang, Xiang Li, Nuo Zhang, Xiaodong Xin, Li Sun, Wei Li, and Ruibao Jia (2016) [Ecological Indicators, 61, 309–316]. Ecological Indicators, 75, 8-9. doi:10.1016/j.ecolind.2016.12.020Chaudhuri, S., & Dutta, D. (2014). Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environmental Monitoring and Assessment, 186(8), 4719-4742. doi:10.1007/s10661-014-3733-6Da Costa Lobato, T., Hauser-Davis, R. A., de Oliveira, T. F., Maciel, M. C., Tavares, M. R. M., da Silveira, A. M., & Saraiva, A. C. F. (2015). Categorization of the trophic status of a hydroelectric power plant reservoir in the Brazilian Amazon by statistical analyses and fuzzy approaches. Science of The Total Environment, 506-507, 613-620. doi:10.1016/j.scitotenv.2014.11.032Delgado, A., & Romero, I. (2016). Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environmental Modelling & Software, 77, 108-121. doi:10.1016/j.envsoft.2015.12.011Do-Thu, N., Morel, A., Nguyen-Viet, H., Pham-Duc, P., Nishida, K., & Kootattep, T. (2011). Assessing nutrient fluxes in a Vietnamese rural area despite limited and highly uncertain data. Resources, Conservation and Recycling, 55(9-10), 849-856. doi:10.1016/j.resconrec.2011.04.008Ferreira, J. G., Andersen, J. H., Borja, A., Bricker, S. B., Camp, J., Cardoso da Silva, M., … Claussen, U. (2011). Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuarine, Coastal and Shelf Science, 93(2), 117-131. doi:10.1016/j.ecss.2011.03.014Firmansyah, I., Spiller, M., de Ruijter, F. J., Carsjens, G. J., & Zeeman, G. (2017). Assessment of nitrogen and phosphorus flows in agricultural and urban systems in a small island under limited data availability. Science of The Total Environment, 574, 1521-1532. doi:10.1016/j.scitotenv.2016.08.159Garmendia, M., Bricker, S., Revilla, M., Borja, Á., Franco, J., Bald, J., & Valencia, V. (2012). Eutrophication Assessment in Basque Estuaries: Comparing a North American and a European Method. Estuaries and Coasts, 35(4), 991-1006. doi:10.1007/s12237-012-9489-8Gharibi, H., Mahvi, A. H., Nabizadeh, R., Arabalibeik, H., Yunesian, M., & Sowlat, M. H. (2012). A novel approach in water quality assessment based on fuzzy logic. Journal of Environmental Management, 112, 87-95. doi:10.1016/j.jenvman.2012.07.007Gómez, N., Licursi, M., Bauer, D. E., Ambrosio, E. S., & Rodrigues Capítulo, A. (2012). Assessment of Biotic Integrity of the Coastal Freshwater Tidal Zone of a Temperate Estuary of South America through Multiple Indicators. Estuaries and Coasts, 35(5), 1328-1339. doi:10.1007/s12237-012-9528-5Gong, Z., & Forrest, J. Y.-L. (2013). Special issue on meteorological disaster risk analysis and assessment: on basis of grey systems theory. Natural Hazards, 71(2), 995-1000. doi:10.1007/s11069-013-0864-yGonzález-Marín, R. M., Moreno-Casasola, P., Castro-Luna, A. A., & Castillo, A. (2016). Regaining the traditional use of wildlife in wetlands on the coastal plain of Veracruz, Mexico: ensuring food security in the face of global climate change. Regional Environmental Change, 17(5), 1343-1354. doi:10.1007/s10113-016-0955-xHajigholizadeh, M., & Melesse, A. M. (2017). Assortment and spatiotemporal analysis of surface water quality using cluster and discriminant analyses. CATENA, 151, 247-258. doi:10.1016/j.catena.2016.12.018Islam, N., Sadiq, R., Rodriguez, M. J., & Francisque, A. (2013). Evaluation of source water protection strategies: A fuzzy-based model. Journal of Environmental Management, 121, 191-201. doi:10.1016/j.jenvman.2013.02.022Kathuria, V. (2006). Controlling water pollution in developing and transition countries—lessons from three successful cases. Journal of Environmental Management, 78(4), 405-426. doi:10.1016/j.jenvman.2005.05.007Kitsiou, D., & Karydis, M. (2011). Coastal marine eutrophication assessment: A review on data analysis. Environment International, 37(4), 778-801. doi:10.1016/j.envint.2011.02.004Koh, E.-H., Lee, S. H., Kaown, D., Moon, H. S., Lee, E., Lee, K.-K., & Kang, B.-R. (2017). Impacts of land use change and groundwater management on long-term nitrate-nitrogen and chloride trends in groundwater of Jeju Island, Korea. Environmental Earth Sciences, 76(4). doi:10.1007/s12665-017-6466-3Lermontov, A., Yokoyama, L., Lermontov, M., & Machado, M. A. S. (2009). River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators, 9(6), 1188-1197. doi:10.1016/j.ecolind.2009.02.006Li, R., Zou, Z., & An, Y. (2016). Water quality assessment in Qu River based on fuzzy water pollution index method. Journal of Environmental Sciences, 50, 87-92. doi:10.1016/j.jes.2016.03.030López-Portillo, J., Lara-Domínguez, A. L., Vázquez, G., & Aké-Castillo, J. A. (2017). Water Quality and Mangrove-Derived Tannins in Four Coastal Lagoons from the Gulf of Mexico with Variable Hydrologic Dynamics. Journal of Coastal Research, 77, 28-38. doi:10.2112/si77-004.1Lundberg, C., Lönnroth, M., von Numers, M., & Bonsdorff, E. (2005). A multivariate assessment of coastal eutrophication. Examples from the Gulf of Finland, northern Baltic Sea. Marine Pollution Bulletin, 50(11), 1185-1196. doi:10.1016/j.marpolbul.2005.04.029Macauley, J. M., Harwell, L. C., & Alafita, H. V. (2007). The Ecological Condition of Veracruz, Mexico Estuaries. Environmental Monitoring and Assessment, 133(1-3), 177-185. doi:10.1007/s10661-006-9571-4Machiwal, D., Islam, A., & Kamble, T. (2019). Trends and probabilistic stability index for evaluating groundwater quality: The case of quaternary alluvial and quartzite aquifer system of India. Journal of Environmental Management, 237, 457-475. doi:10.1016/j.jenvman.2019.02.071Luisa Martínez, M., Mendoza-González, G., Silva-Casarín, R., & Mendoza-Baldwin, E. (2014). Land use changes and sea level rise may induce a «coastal squeeze» on the coasts of Veracruz, Mexico. Global Environmental Change, 29, 180-188. doi:10.1016/j.gloenvcha.2014.09.009Martinez, M. L., Silva, R., Lithgow, D., Mendoza, E., Flores, P., Martínez, R., & Cruz, C. (2017). Human Impact on Coastal Resilience along the Coast of Veracruz, Mexico. Journal of Coastal Research, 77, 143-153. doi:10.2112/si77-015.1Mendoza-González, G., Martínez, M. L., Lithgow, D., Pérez-Maqueo, O., & Simonin, P. (2012). Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecological Economics, 82, 23-32. doi:10.1016/j.ecolecon.2012.07.018Miró, J. J., Estrela, M. J., Caselles, V., & Gómez, I. (2018). Spatial and temporal rainfall changes in the Júcar and Segura basins (1955-2016): Fine-scale trends. International Journal of Climatology, 38(13), 4699-4722. doi:10.1002/joc.5689Montangero, A., & Belevi, H. (2007). Assessing nutrient flows in septic tanks by eliciting expert judgement: A promising method in the context of developing countries. Water Research, 41(5), 1052-1064. doi:10.1016/j.watres.2006.10.036Montangero, A., & Belevi, H. (2008). An approach to optimise nutrient management in environmental sanitation systems despite limited data. Journal of Environmental Management, 88(4), 1538-1551. doi:10.1016/j.jenvman.2007.07.033Ninčević-Gladan, Ž., Bužančić, M., Kušpilić, G., Grbec, B., Matijević, S., Skejić, S., … Morović, M. (2015). The response of phytoplankton community to anthropogenic pressure gradient in the coastal waters of the eastern Adriatic Sea. Ecological Indicators, 56, 106-115. doi:10.1016/j.ecolind.2015.03.018Ocampo-Duque, W., Schuhmacher, M., & Domingo, J. L. (2007). A neural-fuzzy approach to classify the ecological status in surface waters. Environmental Pollution, 148(2), 634-641. doi:10.1016/j.envpol.2006.11.027Primpas, I., Tsirtsis, G., Karydis, M., & Kokkoris, G. D. (2010). Principal component analysis: Development of a multivariate index for assessing eutrophication according to the European water framework directive. Ecological Indicators, 10(2), 178-183. doi:10.1016/j.ecolind.2009.04.007Rivera-Guzmán, N. E., Moreno-Casasola, P., Ibarra-Obando, S. E., Sosa, V. J., & Herrera-Silveira, J. (2014). Long term state of coastal lagoons in Veracruz, Mexico: Effects of land use changes in watersheds on seagrasses habitats. Ocean & Coastal Management, 87, 30-39. doi:10.1016/j.ocecoaman.2013.10.007Rodríguez-Romero, A., Rico-Sánchez, A., Mendoza-Martínez, E., Gómez-Ruiz, A., Sedeño-Díaz, J., & López-López, E. (2018). Impact of Changes of Land Use on Water Quality, from Tropical Forest to Anthropogenic Occupation: A Multivariate Approach. Water, 10(11), 1518. doi:10.3390/w10111518Romero, I., Pachés, M., Martínez-Guijarro, R., & Ferrer, J. (2013). Glophymed: An index to establish the ecological status for the Water Framework Directive based on phytoplankton in coastal waters. Marine Pollution Bulletin, 75(1-2), 218-223. doi:10.1016/j.marpolbul.2013.07.028Sánchez-Hernández, M., Robina-Ramírez, R., & De Clercq, W. (2017). Water Management Reporting in the Agro-Food Sector in South Africa. Water, 9(11), 830. doi:10.3390/w9110830Scannapieco, D., Naddeo, V., Zarra, T., & Belgiorno, V. (2012). River water quality assessment: A comparison of binary- and fuzzy logic-based approaches. Ecological Engineering, 47, 132-140. doi:10.1016/j.ecoleng.2012.06.015Schärer, M., Page, T., & Beven, K. (2006). A fuzzy decision tree to predict phosphorus export at the catchment scale. Journal of Hydrology, 331(3-4), 484-494. doi:10.1016/j.jhydrol.2006.05.034Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379-1389. doi:10.1080/01621459.1968.10480934Sepehri, M., Malekinezhad, H., Hosseini, S. Z., & Ildoromi, A. R. (2019). Assessment of flood hazard mapping in urban areas using entropy weighting method: a case study in Hamadan city, Iran. Acta Geophysica, 67(5), 1435-1449. doi:10.1007/s11600-019-00342-xShaban, M., Urban, B., El Saadi, A., & Faisal, M. (2010). Detection and mapping of water pollution variation in the Nile Delta using multivariate clustering and GIS techniques. Journal of Environmental Management, 91(8), 1785-1793. doi:10.1016/j.jenvman.2010.03.020Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623-656. doi:10.1002/j.1538-7305.1948.tb00917.xShooshtarian, M. R., Dehghani, M., Margherita, F., Gea, O. C., & Mortezazadeh, S. (2018). Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models. Food and Chemical Toxicology, 114, 204-214. doi:10.1016/j.fct.2018.02.025Tabari, H., Marofi, S., & Ahmadi, M. (2010). Long-term variations of water quality parameters in the Maroon River, Iran. Environmental Monitoring and Assessment, 177(1-4), 273-287. doi:10.1007/s10661-010-1633-yTabari, H., Marofi, S., & Ahmadi, M. (2010). Long-term variations of water quality parameters in the Maroon River, Iran. Environmental Monitoring and Assessment, 177(1-4), 273-287. doi:10.1007/s10661-010-1633-yTemino-Boes, R., Romero-López, R., & Romero, I. (2019). A Spatiotemporal Analysis of Nitrogen Pollution in a Coastal Region with Mangroves of the Southern Gulf of Mexico. Water, 11(10), 2143. doi:10.3390/w11102143Tseng, M.-L. (2009). A causal and effect decision making model of service quality expectation using grey-fuzzy DEMATEL approach. Expert Systems with Applications, 36(4), 7738-7748. doi:10.1016/j.eswa.2008.09.011Turner, R., & Rabalais, N. (2013). Nitrogen and phosphorus phytoplankton growth limitation in the northern Gulf of Mexico. Aquatic Microbial Ecology, 68(2), 159-169. doi:10.3354/ame01607Ulloa, M. J., Álvarez-Torres, P., Horak-Romo, K. P., & Ortega-Izaguirre, R. (2017). Harmful algal blooms and eutrophication along the mexican coast of the Gulf of Mexico large marine ecosystem. Environmental Development, 22, 120-128. doi:10.1016/j.envdev.2016.10.007Vadde, K., Wang, J., Cao, L., Yuan, T., McCarthy, A., & Sekar, R. (2018). Assessment of Water Quality and Identification of Pollution Risk Locations in Tiaoxi River (Taihu Watershed), China. Water, 10(2), 183. doi:10.3390/w10020183Vatansever, K., & Akgűl, Y. (2018). Performance evaluation of websites using entropy and grey relational analysis methods: The case of airline companies. Decision Science Letters, 119-130. doi:10.5267/j.dsl.2017.6.005Vázquez-González, C., Moreno-Casasola, P., Juárez, A., Rivera-Guzmán, N., Monroy, R., & Espejel, I. (2015). Trade-offs in fishery yield between wetland conservation and land conversion on the Gulf of Mexico. Ocean & Coastal Management, 114, 194-203. doi:10.1016/j.ocecoaman.2015.06.020Kong, X., Liu, Y., Jian, H., Su, R., Yao, Q., & Shi, X. (2017). New approach for rapid assessment of trophic status of Yellow Sea and East China Sea using easy-to-measure parameters. Journal of Ocean University of China, 16(5), 781-792. doi:10.1007/s11802-017-3203-1Ye, J., Dang, Y., & Li, B. (2018). Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function. Communications in Nonlinear Science and Numerical Simulation, 54, 320-330. doi:10.1016/j.cnsns.2017.06.00

    Distributed Hydrological Modeling: Determination of Theoretical Hydraulic Potential & Streamflow Simulation of Extreme Hydrometeorological Events

    No full text
    The progressive change in climatic conditions worldwide has increased frequency and severity of extreme hydrometeorological events (EHEs). México is an example that has been affected by the occurrence of EHE leading to economic, social, and environmental losses. The objective of this research was to apply a Canadian distributed hydrological model (DHM) to tropical conditions and to evaluate its capacity to simulate flows in a basin in the central Gulf of Mexico. In addition, the DHM (once calibrated and validated) was used to calculate the theoretical hydraulic power (THP) and the performance to predict streamflow before the presence of an EHE. The results of the DHM show that the goodness of fit indicators between the observed and simulated flows in the calibration process Nash-Sutcliffe efficiency (NSE) = 0.83, ratio of the root mean square error to the standard deviation of measured data (RSR) = 0.41, and percent bias (PBIAS) = −4.3) and validation (NSE = 0.775, RSR = 0.4735, and PBIAS = 2.45) are satisfactory. The DHM showed its applicability: determination of THP showed that the mean flows are in synchrony with the order of the river reaches and streamflow simulation of 13 EHEs (NSE = 0.78 ± 0.13, RSR = 0.46 ± 0.14 and PBIAS = −0.48 ± 7.5) confirmed a reliable efficiency. This work can serve as a tool for identifying vulnerabilities before floods and for the rational and sustainable management of water resources
    corecore