14 research outputs found

    Tadpole versus anomaly cancellation in D=4,6 compact IIB orientifolds

    Get PDF
    It is often stated in the literature concerning D=4,6 compact Type IIB orientifolds that tadpole cancellation conditions i) uniquely fix the gauge group (up to Wilson lines and/or moving of branes) and ii) are equivalent to gauge anomaly cancellation. We study the relationship between tadpole and anomaly cancellation conditions and qualify both statements. In general the tadpole cancellation conditions imply gauge anomaly cancellation but are stronger than the latter conditions in D=4, N=1 orientifolds. We also find that tadpole cancellation conditions in Z_N D=4,6 compact orientifolds do not completely fix the gauge group and we provide new solutions different from those previously reported in the literature.Comment: 28 pages, Latex. Minor corrections, updated reference

    Notes on unoriented D-brane instantons

    Full text link
    In the first lecture, we discuss basic aspects of worldsheet and penta-brane instantons as well as (unoriented) D-brane instantons, which is our main focus here, and threshold corrections to BPS-saturated couplings. The second lecture is devoted to non-perturbative superpotentials generated by `gauge' and `exotic' instantons living on D3-branes at orientifold singularities. In the third lecture we discuss the interplay between worldsheet and D-string instantons on T4/Z2T^4/Z_2. We focus on a 4-fermi amplitude, give Heterotic and perturbative Type I descriptions, and offer a multi D-string instanton interpretation. We conclude with possible interesting developments.Comment: 31 pages. Based on lectures delivered by M. Bianchi at the Fourth Young Researchers Workshop of the European Superstring Theory Network in Kounnas Bay, Cyprus, September 200

    Superstring Theory and CP- Violating Phases: Can They Be Related?

    Get PDF
    We investigate the possibility of large CP- violating phases in the soft breaking terms derived in superstring models. The bounds on the electric dipole moments (EDM's) of the electron and neutron are satisfied through cancellations occuring because of the structure of the string models. Three general classes of four-dimensional string models are considered: (i) orbifold compactifications of perturbative heterotic string theory, (ii) scenarios based on Ho\v{r}ava-Witten theory, and (iii) Type I string models (Type IIB orientifolds). Nonuniversal phases of the gaugino mass parameters greatly facilitate the necessary cancellations among the various contributions to the EDM's; in the overall modulus limit, the gaugino masses are universal at tree level in both the perturbative heterotic models and the Ho\v{r}ava-Witten scenarios, which severely restricts the allowed regions of parameter space. Nonuniversal gaugino masses do arise at one-loop in the heterotic orbifold models, providing for corners of parameter space with O(1){\cal O}(1) phases consistent with the phenomenological bounds. However, there is a possibility of nonuniversal gaugino masses at tree level in the Type I models, depending on the details of the embedding of the SM into the D- brane sectors. We find that in a minimal model with a particular embedding of the Standard Model gauge group into two D- brane sectors, viable large phase solutions can be obtained over a wide range of parameter space.Comment: 28 pages, 6 figures; corrected bug in the code and a few typos, results qualitatively unchange

    Constraining the string scale: from Planck to Weak and back again

    Full text link
    String and field theory ideas have greatly influenced each other since the so called second string revolution. We review this interrelation paying particular attention to its phenomenological implications. Our guiding principle is the radical shift in the way that we think about the fundamental scale, in particular the way in which string models have been able to accommodate values from the Planck MPl1018M_\mathrm{Pl}\sim 10^{18} GeV down to the electroweak scale MEWM_{EW}\sim TeV.Comment: Invited review aimed at an experimental audienc

    Intersecting Brane Worlds -- A Path to the Standard Model ?

    Full text link
    In this review we describe the general geometrical framework of brane world constructions in orientifolds of type IIA string theory with D6-branes wrapping 3-cycles in a Calabi-Yau 3-fold. These branes generically intersect in points on the internal space, and the patterns of intersections govern the chiral fermion spectra. We discuss how the open string spectra in intersecting brane models are constructed, how the Standard Model can be embedded, and also how supersymmetry can be realized in this class of string vacua. After the general considerations we specialize the discussion to the case of orbifold backgrounds with intersecting D6-branes and to the quintic Calabi-Yau manifold. Then, we discuss parts of the effective action of intersecting brane world models. Specifically we compute from the Born-Infeld action of the wrapped D-branes the tree-level, D-term scalar potential, which is important for the stability of the considered backgrounds as well as for questions related to supersymmetry breaking. Second, we review the recent computation concerning of gauge coupling unification and also of one-loop gauge threshold corrections in intersecting brane world models. Finally we also discuss some aspects of proton decay in intersecting brane world models.Comment: 31 pages, To appear in the proceedings of the RTN-workshop ``The quantum structure of spacetime and the geometric nature of fundamental interactions'', September 2003 in Copenhagen, revised version contains new refs and one corrected equatio

    TeV physics and the Planck scale

    Get PDF
    Supersymmetry is one of the best motivated possibilities for new physics at the TeV scale. However, both concrete string constructions and phenomenological considerations suggest the possibility that the physics at the TeV scale could be more complicated than the Minimal Supersymmetric Standard Model (MSSM), e.g., due to extended gauge symmetries, new vector-like supermultiplets with non-standard SU(2)xU(1) assignments, and extended Higgs sectors. We briefly comment on some of these possibilities, and discuss in more detail the class of extensions of the MSSM involving an additional standard model singlet field. The latter provides a solution to the μ\mu problem, and allows significant modifications of the MSSM in the Higgs and neutralino sectors, with important consequences for collider physics, cold dark matter, and electroweak baryogenesis.Comment: 17 pages, 5 figures. To appear in New Journal of Physic

    On N=1 gauge models from geometric engineering in M-theory

    No full text
    We study geometric engineering of four-dimensional N=1 gauge models from M-theory on a seven-dimensional manifold with G_2 holonomy. The manifold is constructed as a K3 fibration over a three-dimensional base space with ADE geometry. The resulting gauge theory is discussed in the realm of (p,q) webs. We discuss how the anomaly cancellation condition translates into a condition on the associated affine ADE Lie algebras
    corecore