44 research outputs found

    Lattice Boltzmann method for viscoelastic fluids

    Full text link
    Lattice Boltzmann model for viscoelastic flow simulation is proposed; elastic effects are taken into account in the framework of Maxwell model. The following three examples are studied using the proposed approach: a transverse velocity autocorrelation function for free evolving system with random initial velocities, a boundary-driven propagating shear waves, and a resonant enhancement of oscillations in a periodically driven fluid in a capillary. The measured shear wave dispersion relation is found to be in a good agreement with the theoretical one derived for the Navier-Stokes equation with the Maxwell viscoelastic term.Comment: 4 pages, 5 figure

    A model for the self-organization of vesicular flux and protein distributions in the Golgi apparatus

    Get PDF
    The generation of two non-identical membrane compartments via exchange of vesicles is considered to require two types of vesicles specified by distinct cytosolic coats that selectively recruit cargo and two membrane-bound SNARE pairs that specify fusion and differ in their affinities for each type of vesicles. The mammalian Golgi complex is composed of 6-8 non-identical cisternae that undergo gradual maturation and replacement yet features only two SNARE pairs. We present a model that explains how the distinct composition of Golgi cisternae can be generated with two and even a single SNARE pair and one vesicle coat. A decay of active SNARE concentration in aging cisternae provides the seed for a cis > trans SNARE gradient that generates the predominantly retrograde vesicle flux which further enhances the gradient. This flux in turn yields the observed inhomogeneous steady-state distribution of Golgi enzymes, which compete with each other and with the SNAREs for incorporation into transport vesicles. We show analytically that the steady state SNARE concentration decays exponentially with the cisterna number. Numerical solutions of rate equations reproduce the experimentally observed SNARE gradients, overlapping enzyme peaks in cis, medial and trans and the reported change in vesicle nature across Golgi: Vesicles originating from younger cisternae mostly contain Golgi enzymes and SNAREs enriched in these cisternae and extensively recycle through the Endoplasmic Reticulum (ER), while the other subpopulation of vesicles contains Golgi proteins prevalent in older cisternae and hardly reaches the ER.Comment: 15 pages, 6 figure

    Competition-driven evolution of organismal complexity

    Full text link
    Non-uniform rates of morphological evolution and evolutionary increases in organismal complexity, captured in metaphors like "adaptive zones", "punctuated equilibrium" and "blunderbuss patterns", require more elaborate explanations than a simple gradual accumulation of mutations. Here we argue that non-uniform evolutionary increases in phenotypic complexity can be caused by a threshold-like response to growing ecological pressures resulting from evolutionary diversification at a given level of complexity. Acquisition of a new phenotypic feature allows an evolving species to escape this pressure but can typically be expected to carry significant physiological costs. Therefore, the ecological pressure should exceed a certain level to make such an acquisition evolutionarily successful. We present a detailed quantitative description of this process using a microevolutionary competition model as an example. The model exhibits sequential increases in phenotypic complexity driven by diversification at existing levels of complexity and the resulting increase in competitive pressure, which can push an evolving species over the barrier of physiological costs of new phenotypic features.Comment: Open PDF with Acrobat to see movies, 22 pages, 9 figure
    corecore