93 research outputs found

    CO sensing characteristics of In-doped ZnO semiconductor nanoparticles

    Get PDF
    Abstract A study on the CO sensing characteristics of In-doped ZnO semiconductor nanoparticles (IZO NPs) prepared by a modified sol–gel technique is reported. The morphological and microstructural features of IZO NPs with various dopant concentrations (1 at.%, 2 at.%, 3 at.%, and 5 at.% In) were investigated by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The influence of indium doping on defect characteristics of ZnO was also investigated by photoluminescence (PL). A thick film of IZO NPs was deposited by screen printing on an alumina substrate provided with a pair of Pt interdigitated electrodes to fabricate a simple conductometric sensor platform. The as fabricated In-doped ZnO sensors showed enhanced sensitivity to CO gas with respect to pure ZnO one. Sensors with low dopant loading (1 at.% and 2 at.% In) were found to be more sensitive with shorter response and recovery times than those with high dopant loading

    Synthesis and biological evaluation of phosphonated dihydroisoxazole nucleosides

    Get PDF
    Phosphonated isoxazolinyl nucleosides have been prepared via 1,3-dipolar cycloaddition reaction of nitrile oxides with corresponding vinyl or allyl nucleobases for antiviral studies. The cytotoxicity, the anti-HSV activity and the RT-inhibitory activity of the obtained compounds were evaluated and compared with those of AZT and diethyl{(10SR,40RS)-10-[[(5-methyl-2,4-dioxo-3,4- dihydropyrimidin-1(2H)-yl)]-30-methyl-20-oxa-30-azacyclopent-40-yl]}methylphosphonate, a saturated phosphonated dihydroisoxazole nucleoside analogue

    Towards elimination of measles and rubella in Italy. Progress and challenges

    Get PDF
    Introduction In the WHO European Region, endemic transmission of measles and rubella had been interrupted by 37 and 42 of the 53 member states (MSs), respectively, by 2018. Sixteen MSs are still endemic for measles, 11 for rubella and nine for both diseases, the latter including Italy. Elimination is documented by each country’s National Verification Committee (NVC) through an annual status update (ASU). Objective By analysing data used to produce the ASUs, we aimed to describe the advances made by Italy towards elimination of measles and rubella. Moreover, we propose a set of major interventions that could facilitate the elimination process. Methods A total of 28 indicators were identified within the six core sections of the ASU form and these were evaluated for the period 2013–2018. These indicators relate to the incidence of measles/rubella; epidemiological investigation of cases; investigation of outbreaks; performance of the surveillance system; population immunity levels; and implementation of supplemental immunization activities (SIAs). Results From 2013 to 2018, epidemiological and laboratory analyses of measles cases in Italy improved substantially, allowing timely investigation in 2017 and 2018 of most outbreak and sporadic cases and identification of the majority of genotypic variants. Moreover, since 2017, vaccination coverage has increased significantly. Despite these improvements, several areas of concern emerged, prompting the following recommendations: i) improve outbreak monitoring; ii) strengthen the MoRoNet network; iii) increase the number of SIAs; iv) reinforce vaccination services; v) maintain regional monitoring; vi) design effective communication strategies; vii) foster the role of general practitioners and family paediatricians. Conclusions The review of national ASUs is a crucial step to provide the NVC with useful insights into the elimination process and to guide the development of targeted interventions. Against this background, the seven recommendations proposed by the NVC have been shared with the Italian Ministry of Health and the Technical Advisory Group on measles and rubella elimination and have been incorporated into the new Italian Elimination Plan 2019–2023 as a technical aid to facilitate the achievement of disease elimination goals

    Phosphonated Carbocyclic 2'-Oxa-3'-azanucleosides as New Antiretroviral Agents

    Get PDF
    Phosphonated carbocyclic 2¢-oxa-3¢-azanucleosides have been synthesized and tested for their antiretroviral activity. The obtained results have shown that some of the compounds were as powerful as azydothymidine in inhibiting the reverse transcriptase activity of the human retrovirus T-cell leukemia/lymphotropic virus type 1 and in protecting human peripheral blood mononuclear cells against human retrovirus T-cell leukemia/ lymphotropic virus type 1 transmission in vitro. These data indicate that phosphonated carbocyclic 2¢-oxa- 3¢-azanucleosides possess the necessary requirements to efficiently counteract infections caused by human retroviruses

    Synthesis of phosphonated carbocyclic 2 '-oxa-3 '-aza-nucleosides: Novel inhibitors of reverse transcriptase

    Get PDF
    Phosphonated carbocyclic 2'-oxa-3'-aza-nucleosides have been synthesized in good yields by 1,3-dipolar cycloaddition methodology. The cytotoxicity and the reverse transcriptase inhibitory activity of the obtained compounds have been investigated. Phosphonated carbocyclic 2'-oxa-3'-aza-nucleosides, while showing low levels of cytotoxicity, exert a specific inhibitor activity on two different reverse transcriptases, which is comparable with that of AZT, opening new perspectives on their possible use as therapeutic agents, in anti-retroviral and anti-HBV chemotherapy

    Design of Cationic Multi-Walled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication

    Get PDF
    Polo-Like Kinase (PLK1) has been identified as a potential target in cancer gene therapy via chemical or genetic inhibitory approaches. The biomedical applications of chemically functionalized carbon nanotubes (f-CNTs) in cancer therapy have been studied due to their ability to efficiently deliver siRNA intracellularly. In this study, we established the capacity of cationic MWNT-NH3+ to deliver the apoptotic siRNA against PLK1 (siPLK1) in Calu6 tumor xenografts by direct intratumoural injections. A direct comparison with cationic liposomes was made. This study validates the PLK1 gene as a potential target in cancer gene therapy including lung cancer, as demonstrated by the therapeutic efficacy of siPLK1:MWNT-NH3+ complexes and their ability to significantly improve animal survival. Biological analysis of the siPLK1:MWNT-NH3+ treated tumors by RT-PCR and Western blot, in addition to TUNEL staining confirmed the biological functionality of the siRNA intratumourally, suggesting that tumor eradication was due to PLK1 knockdown. Furthermore, by using a fluorescently labelled, non-coding siRNA sequence complexed with MWNT-NH3+, we established for the first time that the improved therapeutic efficacy observed in f-CNT-based siRNA delivery is directly proportional to the enhanced siRNA retention in the solid tumor and subsequent uptake by tumor cells after local administration in vivo

    Cervical cancer screening in women vaccinated against human papillomavirus infection: Recommendations from a consensus conference

    Get PDF
    In Italy, the cohorts of women who were offered Human papillomavirus (HPV) vaccination in 2007/08 will reach the age (25 years) for cervical cancer (CC) screening from 2017. The simultaneous shift from cytology-based screening to HPV test-based screening gives the opportunity for unprecedented reorganisation of CC prevention. The ONS (National Screening Monitoring Centre) Directive and the GISCi (Italian Group for Cervical Screening) identified the consensus conference as the most suitable method for addressing this topic. A summary of consensus recommendations is reported here. The main objective was to define the best screening methods in girls vaccinated against HPV and the knowledge required for defining evidence-based screening strategies. A Jury made recommendations about questions and proposals formulated by a panel of experts representative of Italian scientific societies involved in CC prevention and based on systematic reviews of literature and evidence. The Jury considered changing the screening protocols for girls vaccinated in their twelfth year as appropriate. Tailored screening protocols based on vaccination status could be replaced by \u201cone size fits all\u201d protocols only when a herd immunity effect has been reached. Vaccinated women should start screening at age 30, instead of 25, with HPV test. Furthermore, there is a strong rationale for applying longer intervals for re-screening HPV negative women than the currently recommended 5 years, but research is needed to determine the optimal screening time points. For non-vaccinated women and for women vaccinated in their fifteenth year or later, the current protocol should be kept
    • …
    corecore