445 research outputs found

    The hope that will not abide

    Get PDF
    Paper presented at the conf Faith, freedom and the academy: the idea of the university in the 21st century, Univ of Prince Edward Island, O 1-3 2004

    Zooming from Global to Local: A Multiscale RBF Approach

    Full text link
    Because physical phenomena on Earth's surface occur on many different length scales, it makes sense when seeking an efficient approximation to start with a crude global approximation, and then make a sequence of corrections on finer and finer scales. It also makes sense eventually to seek fine scale features locally, rather than globally. In the present work, we start with a global multiscale radial basis function (RBF) approximation, based on a sequence of point sets with decreasing mesh norm, and a sequence of (spherical) radial basis functions with proportionally decreasing scale centered at the points. We then prove that we can "zoom in" on a region of particular interest, by carrying out further stages of multiscale refinement on a local region. The proof combines multiscale techniques for the sphere from Le Gia, Sloan and Wendland, SIAM J. Numer. Anal. 48 (2010) and Applied Comp. Harm. Anal. 32 (2012), with those for a bounded region in Rd\mathbb{R}^d from Wendland, Numer. Math. 116 (2012). The zooming in process can be continued indefinitely, since the condition numbers of matrices at the different scales remain bounded. A numerical example illustrates the process

    On the expected uniform error of geometric Brownian motion approximated by the L\'evy-Ciesielski construction

    Full text link
    It is known that the Brownian bridge or L\'evy-Ciesielski construction of Brownian paths almost surely converges uniformly to the true Brownian path. In the present article the focus is on the error. In particular, we show for geometric Brownian motion that at level NN, at which there are d=2Nd=2^N points evaluated on the Brownian path, the expected uniform error has an upper bound of order O(N/2N)\mathcal{O}(\sqrt{N/2^N}), or equivalently, O(lnd/d)\mathcal{O}(\sqrt{\ln d/d}). This upper bound matches the known order for the expected uniform error of the standard Brownian motion. We apply the result to an option pricing example
    corecore