84 research outputs found

    HPLC-UV, MALDI-TOF-MS and ESI-MS/MS Analysis of the Mechlorethamine DNA Crosslink at a Cytosine-Cytosine Mismatch Pair

    Get PDF
    Mechlorethamine [ClCH(2)CH(2)N(CH(3))CH(2)CH(2)Cl], a nitrogen mustard alkylating agent, has been proven to form a DNA interstrand crosslink at a cytosine-cytosine (C-C) mismatch pair using gel electrophoresis. However, the atomic connectivity of this unusual crosslink is unknown.HPLC-UV, MALDI-TOF-MS, and ESI-MS/MS were used to determine the atomic connectivity of the DNA C-C crosslink formed by mechlorethamine, MALDI-TOF-MS of the HPLC-purified reaction product of mechlorethamine with the DNA duplex d[CTCACACCGTGGTTC]•d[GAACCACCGTGTGAG] (underlined bases are a C-C mismatch pair) indicated formation of an interstrand crosslink at m/z 9222.088 [M-2H+Na](+). Following enzymatic digestion of the crosslinked duplex by snake venom phosphodiesterase and calf intestinal phosphatase, ESI-MS/MS indicated the presence of dC-mech-dC [mech = CH(2)CH(2)N(CH(3))CH(2)CH(2)] at m/z 269.2 [M](2+) (expected m/z 269.6, exact mass 539.27) and its hydrolytic product dC-mech-OH at m/z 329.6 [M](+) (expected m/z 329.2). Fragmentation of dC-mech-dC gave product ions at m/z 294.3 and 236.9 [M](+), which are both due to loss of the 4-amino group of cytosine (as ammonia), in addition to dC and dC+HN(CH(3))CH = CH(2), respectively. The presence of m/z 269.2 [M](2+) and loss of ammonia exclude crosslink formation at cytosine N(4) or O(2) and indicate crosslinking through cytosine N(3) with formation of two quaternary ammonium ions.Our results provide an important addition to the literature, as the first example of the use of HPLC and MS for analysis of a DNA adduct at the N(3) position of cytosine

    Kinetic analysis of the role of the tyrosine 13, phenylalanine 56 and glutamine 54 network in the U1A/U1 hairpin II interaction

    Get PDF
    The A protein of the U1 small nuclear ribonucleoprotein particle, interacting with its stem–loop RNA target (U1hpII), is frequently used as a paradigm for RNA binding by recognition motif domains (RRMs). U1A/U1hpII complex formation has been proposed to consist of at least two steps: electrostatically mediated alignment of both molecules followed by locking into place, based on the establishment of close-range interactions. The sequence of events between alignment and locking remains obscure. Here we examine the roles of three critical residues, Tyr13, Phe56 and Gln54, in complex formation and stability using Biacore. Our mutational and kinetic data suggest that Tyr13 plays a more important role than Phe56 in complex formation. Mutational analysis of Gln54, combined with molecular dynamics studies, points to Arg52 as another key residue in association. Based on our data and previous structural and modeling studies, we propose that electrostatic alignment of the molecules is followed by hydrogen bond formation between the RNA and Arg52, and the sequential establishment of interactions with loop bases (including Tyr13). A quadruple stack, sandwiching two bases between Phe56 and Asp92, would occur last and coincide with the rearrangement of a C-terminal helix that partially occludes the RRM surface in the free protein

    Incorporation of zebularine from its 2′-deoxyribonucleoside triphosphate derivative and activity as a template-coding nucleobase

    Get PDF
    Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) was studied as both a 2 ′-deoxyribosyl 5 ′-triphosphate derivative and as a template incorporated into an oligonucleotide. Using a novel pyrosequencing assay, zebularine acted as cytosine analog and was incorporated into DNA with a template pairing profile most similar to cytosine, pairing with greatest efficiency opposite guanine in the template strand. Guanine was incorporated with greater affinity than adenine opposite a zebularine in the template strand. Computer modeling of base-pairing structures supported a better fit of zebularine opposite guanine than adenine. Zebularine acts as a cytosine analog, which supports its activity as an inhibitor of cytosine methyltransferase.A.S.Y. is the recipient of a STOP Cancer Career Development Award and the T.Franklin Williams Scholars-American Society of Oncology Career Development Award. This work was sponsored in part by a grant from the Wright Foundation.Peer reviewe

    The role of positively charged amino acids and electrostatic interactions in the complex of U1A protein and U1 hairpin II RNA

    Get PDF
    Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes

    The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    Get PDF
    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve

    Cardiac catheterization in children with pulmonary hypertensive vascular disease:Consensus statement from the Pulmonary Vascular Research Institute, Pediatric and Congenital Heart Disease Task Forces

    Get PDF
    Cardiac catheterization is important in the diagnosis and risk stratification of pulmonary hypertensive vascular disease (PHVD) in children. Acute vasoreactivity testing provides key information about management, prognosis, therapeutic strategies, and efficacy. Data obtained at cardiac catheterization continue to play an important role in determining the surgical options for children with congenital heart disease and clinical evidence of increased pulmonary vascular resistance. The Pediatric and Congenital Heart Disease Task Forces of the Pulmonary Vascular Research Institute met to develop a consensus statement regarding indications for, conduct of, acute vasoreactivity testing with, and pitfalls and risks of cardiac catheterization in children with PHVD. This document contains the essentials of those discussions to provide a rationale for the hemodynamic assessment by cardiac catheterization of children with PHVD.</p
    corecore