2,000 research outputs found

    New Zealand regions, 1986 – 2001: Hospitalisation and some related health facts

    Get PDF
    Once age and gender composition is controlled for, regional health differentials are a function of problems of health service delivery, of socio-economic variance, and overall Māori Pakeha health differences. They indicate relative levels of exclusion and of inequality. This paper shows that these differentials follow in general the patterns seen in other papers in this series

    Stability of a bi-layer free film: simultaneous or individual rupture events?

    Get PDF
    We consider the stability of a long free film of liquid composed of two immiscible layers of differing viscosities, where each layer experiences a van der Waals force between its interfaces. We analyse the different ways the system can exhibit interfacial instability when the liquid layers are sufficiently thin. For an excess of surfactant on one gas–liquid interface the coupling between the layers is relatively weak and the instability manifests as temporally separated rupture events in each layer. Conversely, in the absence of surfactant the coupling between the layers is much stronger and the instability manifests as rupture of both layers simultaneously. These features are consistent with recent experimental observations

    Warm Ice Giant GJ 3470b. I. A Flat Transmission Spectrum Indicates a Hazy, Low-methane, and/or Metal-rich Atmosphere

    Get PDF
    We report our spectroscopic investigation of the transiting ice giant GJ 3470b's atmospheric transmission, and the first results of extrasolar planet observations from the new Keck/MOSFIRE spectrograph. We measure a planet/star radius ratio of Rp/Rs = 0.0789 +/- 0.0020 in a bandpass from 2.09-2.36 micron and in six narrower bands across this wavelength range. When combined with existing broadband photometry, these measurements rule out cloud-free atmospheres in chemical equilibrium assuming either solar abundances (5.4 sigma confidence) or a moderate level of metal enrichment (50x solar abundances, 3.8 sigma), confirming previous results that such models are not representative for cool, low-mass, externally irradiated extrasolar planets. Current measurements are consistent with a flat transmission spectrum, which suggests that the atmosphere is explained by high-altitude clouds and haze, disequilibrium chemistry, unexpected abundance patterns, or the atmosphere is extremely metal-rich (>200x solar). Because GJ 3470b's low bulk density sets an upper limit on the planet's atmospheric enrichment of <300x solar, the atmospheric mean molecular weight must be <9. Thus, if the atmosphere is cloud-free its spectral features should be detectable with future observations. Transit observations at shorter wavelengths will provide the best opportunity to discriminate between plausible scenarios. We obtained optical spectroscopy with the GMOS spectrograph, but these observations exhibit large systematic uncertainties owing to thin, persistent cirrus conditions. Finally, we also provide the first detailed look at the steps necessary for well-calibrated MOSFIRE observations, and provide advice for future observations with this instrument.Comment: Accepted to A&A. Light curves will be available at CDS (or download arXiv tarball

    Asymmetry in kinematic generalization between visual and passive lead-in movements are consistent with a forward model in the sensorimotor system

    Get PDF
    In our daily life we often make complex actions comprised of linked movements, such as reaching for a cup of coffee and bringing it to our mouth to drink. Recent work has highlighted the role of such linked movements in the formation of independent motor memories, affecting the learning rate and ability to learn opposing force fields. In these studies, distinct prior movements (lead-in movements) allow adaptation of opposing dynamics on the following movement. Purely visual or purely passive lead-in movements exhibit different angular generalization functions of this motor memory as the lead-in movements are modified, suggesting different neural representations. However, we currently have no understanding of how different movement kinematics (distance, speed or duration) affect this recall process and the formation of independent motor memories. Here we investigate such kinematic generalization for both passive and visual lead-in movements to probe their individual characteristics. After participants adapted to opposing force fields using training lead-in movements, the lead-in kinematics were modified on random trials to test generalization. For both visual and passive modalities, recalled compensation was sensitive to lead-in duration and peak speed, falling off away from the training condition. However, little reduction in force was found with increasing lead-in distance. Interestingly, asymmetric transfer between lead-in movement modalities was also observed, with partial transfer from passive to visual, but very little vice versa. Overall these tuning effects were stronger for passive compared to visual lead-ins demonstrating the difference in these sensory inputs in regulating motor memories. Our results suggest these effects are a consequence of state estimation, with differences across modalities reflecting their different levels of sensory uncertainty arising as a consequence of dissimilar feedback delays

    Luminescent solar concentrators for building integrated photovoltaics: opportunities and challenges

    Get PDF
    This review examines the application of luminescent solar concentrators (LSCs) for building integrated photovoltaics (BIPV), both in terms of opaque façade elements and as semi-transparent windows. Many luminophores have been developed for LSC applications, and their efficiencies examined in lab-scale (<25 cm2^2) devices. This analytical review illustrates, using ray-tracing simulations, the technical challenges to maintaining efficiency when scaling these energy conversion devices to pilot- (1000 cm2^2) and commercial-scale (100 000 cm2^2) modules. Based on these considerations, ambitious but feasible target efficiencies for LSCs based on ideal quantum dot (QD) luminophores are suggested as follows – for opaque and semi-transparent (50% average visible transmission), respectively: (i) 11.0% and 5.5% for lab-scale devices; (ii) 10.0% and 5.0% for pilot-scale modules; and (iii) 9.0% and 4.5% for commercial-scale modules. It is worth noting though, that the QD design requirements – particularly with regard to the overlap integral between the absorption and emission spectrum – become very critical as the LSC area increases. Whereas it is difficult to see opaque LSCs successfully competing against standard flat-plate photovoltaic modules for building integration, the application of semi-transparent LSCs as power-generating window elements has potential. Therefore, an economic analysis of the inclusion of LSCs into commercial glazing elements is presented and the potential for novel technologies – such as down-conversion (quantum-cutting) and controlling the direction of emitted light – to move this technology towards application is also discussed

    The spur planetary gear torsional stiffness and its crack sensitivity under quasi-static conditions

    Get PDF
    The sun-planet and ring-planet tooth mesh stiffness variations and the resulting transmission errors are the main internal vibration generation mechanisms for planetary gear systems. This paper presents the results of torsional stiffness analysis of involute spur planetary gear systems in mesh using finite element methods. A planetary gear model with three planet gears and fixed ring gear and its subsystem models have been developed to study the subsystem and overall torsional stiffnesses. Based on the analysis of torsional mesh stiffness, predictive models for single branch sun-planet-ring and overall planetary gear torsional stiffnesses have been proposed. A crack coefficient was introduced to the sun-planet and ring-planet meshes to predict the effect and sensitivity of changes to the overall torsional mesh stiffness. The resulting mesh stiffness crack sensitivity of the overall gear system was analysed under quasi-static conditions. It was found that the carrier arm stiffness has great influence on the crack sensitivity while the overall stiffness was most sensitive to the crack on the sun-planet mesh

    The value of the follow-through derives from motor learning depending on future actions.

    Get PDF
    In ball sports, we are taught to follow through, despite the inability of events after contact or release to influence the outcome [1, 2]. Here we show that the specific motor memory active at any given moment critically depends on the movement that will be made in the near future. We demonstrate that associating a different follow-through movement with two motor skills that normally interfere [3-7] allows them to be learned simultaneously, suggesting that distinct future actions activate separate motor memories. This implies that when learning a skill, a variable follow-through would activate multiple motor memories across practice, whereas a consistent follow-through would activate a single motor memory, resulting in faster learning. We confirm this prediction and show that such follow-through effects influence adaptation over time periods associated with real-world skill learning. Overall, our results indicate that movements made in the immediate future influence the current active motor memory. This suggests that there is a critical time period both before [8] and after the current movement that determines motor memory activation and controls learning.This is the final published version. The article was originally published in Current Biology, Volume 25, Issue 3, p397–401, 2 February 2015, DOI: 10.1016/j.cub.2014.12.03

    Effect of decorrelation on 3-D grating detection with static and dynamic random-dot stereograms

    Get PDF
    Three experiments examined the effects of image decorrelation on the stereoscopic detection of sinusoidal depth gratings in static anddynamic random-dot stereograms (RDS). Detection was found to tolerate greater levels of image decorrelation as: (i) density increasedfrom 23 to 676 dots/deg2; (ii) spatial frequency decreased from 0.88 to 0.22 cpd; (iii) amplitude increased above 0.5 arcmin; and (iv) dotlifetime decreased from 1.6 s (static RDS) to 80 ms (dynamic RDS). In each case, the specific pattern of tolerance to decorrelation couldbe explained by its consequences for image sampling, filtering, and the influence of depth noise

    Effect of decorrelation on 3-D grating detection with static and dynamic random-dot stereograms

    Get PDF
    Three experiments examined the effects of image decorrelation on the stereoscopic detection of sinusoidal depth gratings in static anddynamic random-dot stereograms (RDS). Detection was found to tolerate greater levels of image decorrelation as: (i) density increasedfrom 23 to 676 dots/deg2; (ii) spatial frequency decreased from 0.88 to 0.22 cpd; (iii) amplitude increased above 0.5 arcmin; and (iv) dotlifetime decreased from 1.6 s (static RDS) to 80 ms (dynamic RDS). In each case, the specific pattern of tolerance to decorrelation couldbe explained by its consequences for image sampling, filtering, and the influence of depth noise
    • 

    corecore