1,763 research outputs found

    Quantum Robust Stability of a Small Josephson Junction in a Resonant Cavity

    Full text link
    This paper applies recent results on the robust stability of nonlinear quantum systems to the case of a Josephson junction in a resonant cavity. The Josephson junction is characterized by a Hamiltonian operator which contains a non-quadratic term involving a cosine function. This leads to a sector bounded nonlinearity which enables the previously developed theory to be applied to this system in order to analyze its stability.Comment: A version of this paper appeared in the proceedings of the 2012 IEEE Multi-conference on Systems and Contro

    A Direct Coupling Coherent Quantum Observer for a Single Qubit Finite Level Quantum System

    Full text link
    This paper considers the problem of constructing a direct coupling quantum observer for a single qubit finite level quantum system plant. The proposed observer is a single mode linear quantum system which is shown to be able to estimate one of the plant variables in a time averaged sense. A numerical example and simulations are included to illustrate the properties of the observer.Comment: A preliminary version of this paper has been accepted to appear in the 2014 Australian Control Conferenc

    Quantum Popov robust stability analysis of an optical cavity containing a saturated Kerr medium

    Full text link
    This paper applies results on the robust stability of nonlinear quantum systems to a system consisting an optical cavity containing a saturated Kerr medium. The system is characterized by a Hamiltonian operator which contains a non-quadratic term involving a quartic function of the annihilation and creation operators. A saturated version of the Kerr nonlinearity leads to a sector bounded nonlinearity which enables a quantum small gain theorem to be applied to this system in order to analyze its stability. Also, a non-quadratic version of a quantum Popov stability criterion is presented and applied to analyze the stability of this system.Comment: A shortened version will appear in the Proceedings of the 2013 European Control Conferenc

    Physical Interpretations of Negative Imaginary Systems Theory

    Full text link
    This paper presents some physical interpretations of recent stability results on the feedback interconnection of negative imaginary systems. These interpretations involve spring mass damper systems coupled together by springs or RLC electrical networks coupled together via inductors or capacitors.Comment: To appear in the Proceedings of the 10th ASIAN CONTROL CONFERENCE 201

    Coherent-Classical Estimation for Quantum Linear Systems

    Full text link
    This paper introduces a problem of coherent-classical estimation for a class of linear quantum systems. In this problem, the estimator is a mixed quantum-classical system which produces a classical estimate of a system variable. The coherent-classical estimator may also involve coherent feedback. An example involving optical squeezers is given to illustrate the efficacy of this idea.Comment: A version of this paper will appear in the Proceedings of the 2013 Australian Control Conferenc
    • …
    corecore