4 research outputs found

    Elucidating the substrate specificities of acyl-lipid thioesterases from diverse plant taxa

    No full text
    Acyl-ACP thioesterase enzymes, which cleave fatty acyl thioester bonds to release free fatty acids, contribute to much of the fatty acid diversity in plants. In Arabidopsis thaliana, a family of four single hot-dog fold domain, plastid-localized acyl-lipid thioesterases (AtALT1-4) generate medium-chain (C6-C14) fatty and β–keto fatty acids as secondary metabolites. These volatile products may serve to attract insect pollinators or deter predatory insects. Homologs of AtALT1-4 are present in all plant taxa, but are nearly all uncharacterized. Despite high sequence identity, AtALT1-4 generate different lipid products, suggesting that ALT homologs in other plants also have highly varied activities. We investigated the catalytic diversity of ALT-like thioesterases by screening the substrate specificities of 15 ALT homologs from monocots, eudicots, a lycophyte, a green microalga, and the ancient gymnosperm Gingko biloba, via expression in Escherichia coli. Overall, these enzymes had highly varied substrate preferences compared to one another and to AtALT1-4, and could be classified into four catalytic groups comprising members from diverse taxa. Group 1 ALTs primarily generated 14:1 β-keto fatty acids, Group 2 ALTs produced 6–10 carbon fatty/β-keto fatty acids, Group 3 ALTs predominantly produced 12–14 carbon fatty acids, and Group 4 ALTs mainly generated 16 carbon fatty acids. Enzymes in each group differed significantly in the quantities of lipids and types of minor products they generated in E. coli. Medium-chain fatty acids are used to manufacture insecticides, pharmaceuticals, and biofuels, and ALT-like proteins are ideal candidates for metabolic engineering to produce specific fatty acids in significant quantities

    Fatty Acyl Synthetases and Thioesterases in Plant Lipid Metabolism: Diverse Functions and Biotechnological Applications

    No full text
    Plants use fatty acids to synthesize acyl lipids for many different cellular, physiological, and defensive roles. These roles include the synthesis of essential membrane, storage, or surface lipids, as well as the production of various fatty acid-derived metabolites used for signaling or defense. Fatty acids are activated for metabolic processing via a thioester linkage to either coenzyme A or acyl carrier protein. Acyl synthetases metabolically activate fatty acids to their thioester forms, and acyl thioesterases deactivate fatty acyl thioesters to free fatty acids by hydrolysis. These two enzyme classes therefore play critical roles in lipid metabolism. This review highlights the surprisingly complex and varying roles of fatty acyl synthetases in plant lipid metabolism, including roles in the intracellular trafficking of fatty acids. This review also surveys the many specialized fatty acyl thioesterases characterized to date in plants, which produce a great diversity of fatty acid products in a tissue-specific manner. While some acyl thioesterases produce fatty acids that clearly play roles in plant-insect or plant-microbial interactions, most plant acyl thioesterases have yet to be fully characterized both in terms of their substrate specificities and their functions. The biotechnological applications of plant acyl thioesterases and synthetases are also discussed, as there is significant interest in these enzymes as catalysts for the sustainable production of fatty acids and their derivatives for industrial uses
    corecore