27 research outputs found

    Beach morphodynamics behind a series of detached breakwaters in a mesotidal environment

    Get PDF
    Morphodynamics of beaches protected by detached breakwaters have been investigated in this thesis at timescales ranging from days to years. A site consisting of nine breakwaters on a coast open to energetic wave conditions in a meso-tidal environment is studied. Two phases of breakwaters were built at the site: phase one comprising of four fully emergent, 200m long structures, which have caused the formation of tidal tombolos; and phase two, five 160m long breakwaters, submerged at high tide, behind which salients have formed. The site allows for comparison of response at beaches protected by different breakwater designs under similar wave and tidal forcing. Three analysis strands are presented: video derived intertidal changes; differential global positioning system (DGPS) surveys; and numerical modelling of the breakwater scheme. Together, the three strands allow for determination of important changes to beach morphology and their relation to forcing. A dataset of weekly mean sea level contours and a set of pre- and post- storm inter-tidal surveys were extracted from the video data. DGPS surveys were conducted of the beach and the inshore bathymetry at monthly intervals; these allowed definition of supra- and sub-tidal changes not achievable from the video data. A `state of the art' numerical model, MIKE21, was used to model waves, hydrodynamics and sediment transport about the scheme for prevailing boundary conditions. The numerical modelling gave insight into the sediment transport pathways and the relative importance of waves and tides as driving forces for morphological change. The beaches protected by the breakwaters were found to be eroding at an average rate of 0.5m yr'' (vertical elevationc hange),a rate comparablet o unprotectedb eachesT. hus it seemst he detached breakwater scheme is failing to substantially reduce the local erosion problem. The dynamic natureo f the beachese, speciallyt he tombolos and salients,m eanst hat an equilibrium shorelinec annotb e establishedT. he breakwaterp rotectedb eachesw ere less variable than the unprotectedb eachesd, isplaying 65-75% of the standardd eviation of vertical change.H owever, morphological changesw ere still considerable:r angei n cross-shorem ovemento f the means ea level contour was between 6m in the bay centres and 80m on the tombolo horns. Empirical orthogonal function analysis of the DGPS and mean sea level contour datasets allowed for determination of three main modes of change which were similar for both phases. The changes were: a general erosion and accretion (46-75% of the dataset variance), a longshore movement of the salients and tombolos (6-27% of the dataset variance), and cross-shore profile changes (-10% of the dataset variance). Correlation analysis and consideration of the numerical modelling results and storm induced morphological change provided relation of the observed changes to wave and tidal forcing. Differences in morphological response were noted for the different breakwater designs. Patterns of response behind the larger breakwaters were better defined due to higher gradients in wave energy between sheltered and unsheltered regions. Cross-shore changes displayed additional three-dimensionality for the smaller breakwaters which led to an increase and decrease in the amplitude of salient sinuosity. An additional mode of change, sub-tidal erosion and accretion of the bay floors, was observed for the larger breakwaters. Temporal signals showed more seasonality for the phase two breakwaters. In summer the beaches protected by the smaller breakwaters were wider, higher and salient amplitudes were greater. The changes behind the phase one breakwaters exhibited greater dependence on specific wave and surge events. The general erosion and accretion showed an eroding trend with erosion exacerbated by higher water levels for beaches protected by both sizes of breakwater. The longshore movement of the tombolos and salients was forced by obliquely incident waves. For the tombolos, numerical modelling also demonstrated the importance of tidally induced movement. Magnitude of longshore movement (typically -'25m) depended strongly on the antecedent morphological conditions. Cross-shore profile changes were storm induced for the beaches protected by the larger structures: storms reducing profile gradients rapidly and subsequent poststorm recovery. For the beaches protected by the smaller structures, storm induced gradient changes were also important but an additional correlation with wave period was noted. The sub-tidal changes to the phase one bay floors were forced by storm and surge conditions.the Engineering and Physical Sciences Research Counci

    The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth

    Get PDF
    This contribution investigates the impact of the deployment of tidal stream turbine arrays on sediment dynamics and seabed morphology in the Pentland Firth, Scotland. The Pentland Firth is arguably the premier tidal stream site in the world and engineering developments are progressing rapidly. Therefore understanding and minimising impacts is vital to ensure the successful development of this nascent industry. Here a 3 dimensional coupled hydrodynamic and sediment transport numerical model is used to investigate the impact on sediment transport and morphodynamics of tidal stream arrays. The aim of the work presented here is twofold: firstly to provide prediction of the changes caused by multiple tidal stream turbine array developments to some of the unique sandy seabed environments in the Pentland Firth and secondly as a case study to determine the relationship between impacts of individual tidal stream farms and cumulative impacts of multiple farms. Due to connectivity in tidal flow it has been hypothesized that the cumulative impact of multiple arrays on sediment dynamics might be non-linear. This work suggests that, for the Pentland Firth, this is not the case: the cumulative impact of the 4 currently proposed arrays in the area is equal to the sum of the impacts of the individual arrays. Additionally, array implementation only has minimal effect on the baseline morphodynamics of the large sandbanks in the region, smaller more local sandbanks were not considered. These two results are extremely positive for tidal stream developers in the region since it removes the burden of assessing cumulative impact from individual developers and suggests that impacts to sub-sea morphodynamics is insignificant and hence is unlikely to be an impediment to development in the Pentland Firth with the currently proposed levels of extraction

    Wave-turbulence separation at a tidal energy site with empirical orthogonal function analysis

    Get PDF
    Acoustic Doppler current profilers (ADCPs) are the standard tool for measuring tidal currents at tidal stream energy sites; they are used to estimate several parameters, including turbulent kinetic energy (TKE). However, estimates of TKE from ADCPs are often swamped by wave action. We surmise that this bias can be detected as a data mode: to test this, we present an empirical orthogonal function (EOF) analysis of two months of TKE estimates from ADCP measurements at a tidal energy site with significant wave activity. The results of the analysis were compared with linear wave theory, using data from a wave buoy. The first data mode identified from EOF analysis agrees well with the wave bias predicted by linear theory, and the resulting decomposition of the data set into wave and turbulent components appears realistic. This decomposition is possible from ADCP data alone, and therefore offers a novel and widely applicable analysis technique for simultaneous assessment of turbulence and waves at highly-energetic tidal sites. The method can also be applied retrospectively to historical data sets. We also show that the decomposition can be improved by including higher EOF modes, but this requires an independent measurement of waves to determine the optimum number of modes

    Comparison of dense optical flow and PIV techniques for mapping surface current flow in tidal stream energy sites

    Get PDF
    Marine renewable energy site and resource characterisation, in particular tidal stream energy, require detailed flow measurements which often rely on high-cost in situ instrumentation which is limited in spatial extent. We hypothesise uncrewed aerial vehicles (UAV) offer a low-cost and low-risk data collection method for tidal stream environments, as recently techniques have been developed to derive flow from optical videography. This may benefit tidal and floating renewable energy developments, providing additional insight into flow conditions and complement traditional instrumentation. Benefits to existing data collection methods include capturing flow over a large spatial extent synchronously, which could be used to analyse flow around structures or for site characterisation; however, uncertainty and method application to tidal energy sites is unclear. Here, two algorithms are tested: large-scale particle image velocimetry using PIVlab and dense optical flow. The methods are applied on video data collected at two tidal stream energy sites (Pentland Firth, Scotland, and Ramsey Sound, Wales) for a range of flow and environmental conditions. Although average validation measures were similar (~ 20–30% error), we recommend PIVlab processed velocity data at tidal energy sites because we find bias (underprediction) in optical flow for higher velocities (> 1 m/s)

    Characterizing the Marine Energy Test Area (META) in Wales, UK

    Get PDF
    With lack of convergence on any single wave or tidal technology, test centres have a unique role in the marine renewable energy industry. Test centres facilitate real testing at sea for devices and components at various TRLs (Technology Readiness Level), reducing the time, cost, and risks faced by marine energy developers. META (Marine Energy Test Area) is a £2.7M project managed by Marine Energy Wales (MEW), consisting of eight test areas in the Milford Haven Waterway and surrounding waters (Pembrokeshire, Wales). Although various datasets have been collected from the META test areas over the last decade, and some aspects of these data have been published in various reports, the data has not been gathered together, systematically analysed and critically assessed – the aim of this study. Here, we describe and interpret the various META datasets, including multibeam, ADCP (acoustic Doppler current profiler), and wave buoy data. We report the key parameters of relevance to testing at META, including bathymetry, the nature and magnitude of the tidal currents, turbulence, and wave climates. We make recommendations on future priorities for data collection at META, and discuss the future of the test areas, including expansion into floating wind and other evolving marine energy technologies

    Natural dynamics overshadow anthropogenic impact on marine fauna at an urbanised coastal embayment

    Get PDF
    Understanding vulnerabilities of coastal ecosystems facing anthropogenic use is a precondition for management decisions and development planning. This can be challenging in urbanised areas with multiple activities affecting different faunal communities. The aim of this study was to provide a holistic understanding of the relative importance of anthropogenic and natural variables for macroinfauna, epifauna and fish in a heavily modified waterbody (HMWB) designated under the EU Water Framework Directive (WFD). The study area, Swansea Bay (Wales, UK), had two regularly dredged industrial ports, three estuaries, a wastewater discharge point and a dredge-spoil disposal site. Wave and tidal current models were constructed, and environmental data were gathered by field studies. Biota were assessed by grab sampling and dredging. Modelled and empirical data were combined in a Distance-based Linear Model (DistLM) that quantified how much of the faunal variation was explained by wave exposure and tidal currents, sediment characteristics and other environmental factors, and by anthropogenic usage. Wave and tidal current parameters explained over 50% of the variation in all biota. Infauna communities were further linked with sediment properties and epibenthos with distance to estuaries. Fish and epibenthos were affected by a dredge-spoil disposal site, but none of the faunal communities was affected by the wastewater outfall. Biota were predominantly driven by the natural hydrodynamic regime while anthropogenic factors had secondary influence. The study highlighted that ecosystems driven by a strong hydrodynamic regime can be relatively resistant to human activities

    Intercomparison of surface velocimetry techniques for drone-based marine current characterization

    Get PDF
    Mapping tidal currents is important for a variety of coastal and marine applications. Deriving current maps from in-situ measurements is difficult due to spatio-temporal separation of measurement points. Therefore, low-cost remote sensing tools such as drone-based surface velocimetry are attractive. Previous application of particle image velocimetry to tidal current measurements demonstrated that accuracy depends on site and environmental conditions. This study compares surface velocimetry techniques across a range of these conditions. Various open-source tools and image pre-processing methods were applied to six sets of videos and validation data that cover a variety of site and weather conditions. When wind-driven ripples are present in imagery, it was found a short-wave celerity inversion performed best, with mean absolute percentage error (MAPE) of 5–6% compared to surface drifters. During lower wind speeds, current-advected surface features are visible and techniques which track these work best, of which the most appropriate technique depends on specifics of the collected imagery; MAPEs of 9–21% were obtained. This work has quantified accuracy and demonstrated that surface current maps can be obtained from drones under both high and low wind speeds and at a variety of sites. By following these suggested approaches, practitioners can use drones as a current mapping tool at coastal and offshore sites with confidence in the outputs

    Spatial Variation in Coastal Dune Evolution in a High Tidal Range Environment

    Get PDF
    Coastal dunes have global importance as ecological habitats, recreational areas, and vital natural coastal protection. Dunes evolve due to variations in the supply and removal of sediment via both wind and waves, and on stabilization through vegetation colonization and growth. One aspect of dune evolution that is poorly understood is the longshore variation in dune response to morphodynamic forcing, which can occur over small spatial scales. In this paper, a fixed wing unmanned aerial vehicle (UAV), is used to measure the longshore variation in evolution of a dune system in a megatidal environment. Dune sections to the east and west of the study site are prograding whereas the central portion is static or eroding. The measured variation in dune response is compared to mesoscale intertidal bar migration and short-term measurements of longshore variation in wave characteristics during two storms. Intertidal sand bar migration is measured using satellite imagery: crescentic intertidal bars are present in front of the accreting portion of the beach to the west and migrate onshore at a rate of 0.1–0.2 m/day; episodically the eastern end of the bar detaches from the main bar and migrates eastward to attach near the eastern end of the study area; bypassing the central eroding section. Statistically significant longshore variation in intertidal wave heights were measured using beachface mounted pressure transducers: the largest significant wave heights are found in front of the dune section suffering erosion. Spectral differences were noted with more narrow-banded spectra in this area but differences are not statistically significant. These observations demonstrate the importance of three-dimensionality in intertidal beach morphology on longshore variation in dune evolution; both through longshore variation in onshore sediment supply and through causing longshore variation in near-dune significant wave heights

    The Use of Unmanned Aerial Systems to Map Intertidal Sediment

    Get PDF
    This paper describes a new methodology to map intertidal sediment using a commercially available unmanned aerial system (UAS). A fixed-wing UAS was flown with both thermal and multispectral cameras over three study sites comprising of sandy and muddy areas. Thermal signatures of sediment type were not observable in the recorded data and therefore only the multispectral results were used in the sediment classification. The multispectral camera consisted of a Red–Green–Blue (RGB) camera and four multispectral sensors covering the green, red, red edge and near-infrared bands. Statistically significant correlations (>99%) were noted between the multispectral reflectance and both moisture content and median grain size. The best correlation against median grain size was found with the near-infrared band. Three classification methodologies were tested to split the intertidal area into sand and mud: k-means clustering, artificial neural networks, and the random forest approach. Classification methodologies were tested with nine input subsets of the available data channels, including transforming the RGB colorspace to the Hue–Saturation–Value (HSV) colorspace. The classification approach that gave the best performance, based on the j-index, was when an artificial neural network was utilized with near-infrared reflectance and HSV color as input data. Classification performance ranged from good to excellent, with values of Youden’s j-index ranging from 0.6 to 0.97 depending on flight date and site

    A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis

    Get PDF
    To fully understand the performance of tidal stream turbines for the development of ocean renewable energy, a range of computational models is required. We review and compare results from several models of horizontal axis turbines at different spatial scales. Models under review include blade element momentum theory (BEMT), blade element actuator disk, Reynolds averaged Navier Stokes (RANS) CFD (BEM-CFD), blade-resolved moving reference frame and coastal models based on the shallow water equations. To evaluate the BEMT, a comparison is made to experiments with three different rotors. We demonstrate that, apart from the near-field wake, there are similarities in the results between the BEM-CFD approach and a coastal area model using a simplified turbine fence at a headland case
    corecore